Communication Systems Group, Prof. Dr. Burkhard Stiller

BACHELOR THESIS

University of
Zurich™

7

Design and Implementation of a
Commit Evaluation Engine for an
Open Source Donation Platform

Calvin Falter
Ztirich, Switzerland
Student ID: 17-708-934

Supervisor: Eder John Scheid, Dr. Thomas Bocek,
Dr. Guilherme Sperb Machado
Date of Submission: November 1, 2020

University of Zurich
Department of Informatics (IFI)
BinzmuUhlestrasse 14, CH-8050 Zurich, Switzerland —

Bachelor Thesis

Communication Systems Group (CSQ)
Department of Informatics (IFI)

University of Zurich

BinzmUhlestrasse 14, CH-8050 Ztirich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Mit dem Wechsel von kommerzieller Software zu Open-Source-Software beteiligen sich
immer mehr Entwickler an diesen Projekten. Leider verschwinden die meisten Open-
Source-Projekte nach wenigen Tagen. Dafiir gibt es mehrere Griinde, wovon einer die
mangelnde Finanzierung ist. In dieser Arbeit wird eine Software vorgestellt, mit dem der
Beitrag eines bestimmten Entwicklers zu einem Open-Source-Projekt berechnet werden
kann. Damit sollen die Spenden fiir ein Projekt gerecht unter den Mitwirkenden je nach
ihrer geleisteten Arbeit verteilt werden konnen. Zu diesem Zweck werden in bestehen-
den Studien zur Analyse von Beitrdagen verschiedene Metriken evaluiert, weitere mogliche
Metriken untersucht und schliesslich eine Auswahl von Metriken getroffen, die auf den
Anwendungsfall der Open-Source-Repository-Analyse anwendbar sind. Dies resultiert in
Metriken, die vom Versionskontrollsystem Git extrahiert werden kénnen und die durch
Informationen ergéinzt werden konnen, welche auf Repository-Plattformen wie GitHub
verfiigbar sind. Eine Use-Case-Analyse der Software zeigt die Anwendbarkeit der Systems
und bestétigt die Korrektheit der berechneten Beitrage.

With the shift from commercial software to open-source software, more and more devel-
opers participate in these projects. Unfortunately, most open-source projects disappear
after a few days. There are several reasons for this, one of which is the lack of funding.
This thesis presents an engine that can be used to calculate an individual developer’s
contribution to an open-source project. This should enable to distribute the donations
for a project fairly among the contributors according to the work they have performed.
For this purpose, different metrics are evaluated in existing studies on contributions anal-
ysis, further possible metrics are examined and finally, a selection of metrics is made that
are applicable to the use case of open source repository analysis. This results in metrics
that can be extracted by the version control system Git, which can be supplemented by
information available on repository platforms like GitHub. A use case analysis of the
software shows the engine’s applicability and confirms the correctness of the calculated
contributions.

1

Acknowledgments

First of all, I would like to thank the two initiators of this project, Dr. Thomas Bocek and
Dr. Guilherme Sperb Machado. They were and still are enthusiastic about this project
and have always supported me with great euphoria. I would also like to express my
special thanks to Eder John Scheid, who continuously supported me from the scientific
side and always pointed me in the right direction. At this point, I would like to thank Prof.
Dr. Burkhard Stiller for letting me be part of an exciting project of the Communication
Systems Group of the University of Zurich.

iii

v

Contents

Abstract
Acknowledgments

1 Introduction and Motivation
1.1 Description of Work

1.2 Thesis Outline

2 Background

2.1 Version Control System - Git L.
2.2 Software Repository Platform
2.3 Software Quality Metric
24 Code Complexity

3 Related Work
3.1 Discussion

3.2 Implication

4 Commit Evaluation Engine

4.1 Requirementso
4.2 Design
421 Metric
4.2.2 Developer Contribution
4.2.3 Architectureo

vi

4.3 Implementation

4.3.1 Cloning and Updating the Repository

4.3.2 Git Analysiso
4.3.3 Platform Information From GitHub
4.3.4 Concurrency
435 Requests

5 Evaluation and Discussion

5.1 Performance Testing
5.1.1 Cloning / Updating Repository
5.1.2 Analyzing the Repository
5.1.3 Platform Information
5.1.4 Weight Analysis

52 UseCase.

5.3 Discussion Lo

6 Summary and Conclusions

Bibliography

List of Figures

List of Tables

A Installation Guidelines

A.1 Server Installation

B Contents of the CD

CONTENTS

57

59

62

63

67

........... 67

........... 67

69

Chapter 1

Introduction and Motivation

Open source means that a license for a software project allows users to modify and enhance
the project. This means that an open-source software can be integrated into other projects
and allows reuse of the code and ideas freely. Thus, open-source removes the barriers of
collaboration to accelerate innovation and technological advancements. In the last few
years, a trend in shifting from commercial software to open-source software was observable

3].

Open-source projects often struggle to keep active, as can be seen in [29], where it was
verified that, from 843,763 GitHub projects, most of them only live for 10 days. There
are several reasons why most open-source projects fail [5], e.g., due to the lack of en-
gagement or interest from the developer community, usurped by a competitor, lack of
time, or obsolescence of the project. However, among all of these reasons, one stands out,
which is the lack of funding [6]. The funding of open-source projects is achieved through
crowdfunding, paid licenses, sponsorship from big companies, or donations.

These mentioned possibilities to support a project are based on the fact that there is
an organization or a structured grouping behind the project. GitHub [16] as the largest
open-source software platform has created such a service itself. This service is called
GitHub sponsors [15]. Through these sponsors it is possible to support either a developer
or an organization. The advantage of this is certainly the direct embedding in the place
where the code is located and from where it is often looked at. If you would like to
support someone with an amount of money, this can be done as a monthly payment with
a predetermined amount. However, it is not possible to simply support a project. Other
services like Patreon [39] or Open collective [35] allow this. But how the money is used or
shared is up to the owners of the Patreon or Open Collective account or the Git repository.

Therefore, it is impossible to pay the developers for their work on a project with the
current funds unless their GitHub sponsors account is found (if it exists). An amount can
then be transferred to them. However, this amount is not related to their contribution
to this repository. This fact shall now be changed. In a project of which this thesis is a
part, a method will be created to support a repository. This is to be done in a way that it
is possible to support the repository financially, except the donations do not remain with
the organization or the owners of the repositories and have to distribute them manually.

2 CHAPTER 1. INTRODUCTION AND MOTIVATION

Instead, the donations are distributed to the developers according to the contribution
made to the repository. For this purpose, an engine will be developed that analyzes the
repository, quantifies the developers’ contributions, and calculates a score that reflects
individual developers’ contributions.

1.1 Description of Work

In an initial stage, this thesis demands to research in the literature, which are the metrics
that must be taken into consideration when developing an engine able to quantify the real
contribution of a developer towards an open-source project. In this sense, a state-of-the-
art review regarding "mining and quantifying developer contribution” must be conducted
to gather and classify all the metrics and current works. The expected outcome is a
detailed and complete classification and documentation of existing work.

After the relevant metrics are identified in a second stage, the engine needs to be designed
in a scalable way. This is important, as large projects such as the Linux kernel have
thousands of contributors, which will take time to analyze. The implementation should
bring one or more metrics to quantify developer contributions, also covering common use
cases. After the design of the engine, it should be implemented. Various test-cases should
cover good-path and corner cases as well.

1.2 Thesis Outline

This thesis is divided into six chapters. Chapter 2 gives background information on the
topics used in this thesis. Chapter 3 presents various studies that also deal with the
quantification of developer contribution using different approaches and metrics. These
approaches will be discussed and analyzed, which metrics can be used for this project.
Subsequently, Chapter 4 will deal with the commit evaluation engine, which is developed in
this thesis’s context. First, some requirements are defined. Based on these requirements,
the individual metrics will be determined and described how they will be used to calculate
the contribution. This chapter also documents the implementation. Chapter 5 then deals
with the evaluation of the engine. The performance is tested, and a use-case example is
performed. Chapter 6 finishes with a summary and a conclusion.

Chapter 2

Background

As this thesis tackles problems related to version control systems and software quality met-
rics, it is crucial to describe these areas and related concepts. Thus, Section 2.1 describes
the Git version control system, Section 2.2 presents platforms for software repositories,
Section 2.3 lists software quality metrics, and, finally, Section 2.4 delves into code com-
plexity calculation.

2.1 Version Control System - Git

Version control systems (VCS) are systems that record and manage changes to one or
more files. There are local VCS that record the changes in a database. There exist
also centralized VCS. These possess a single centralized database where the changes are
recorded. Computers that want to use versions of a file always access this database
directly. The last variant is distributed VCS. In these systems, each network member has
its personal database on which it manages the versions of the file(s). To work together
with other members, it is possible to synchronize the versions and add versions from
another network database to the version database [10].

One such system is Git. It is often used in connection with code development and has
become the de facto standard. The distributed approach also makes it possible to work
collaboratively with other developers. These features are essential for the development
of open-source software. Anyone with the necessary rights can participate in a project.
Besides, the whole code with the history of the versions is continuously visible to everyone.
In most cases, a platform is preferred as a server computer for the version database.
The largest such platform is GitHub. However, there are also others, e.g., GitLab and
Bitbucket. In theory, it is even possible to self-host such a platform. Retrieving code from
a platform works the identical way with the VCS Git, regardless of the platform. There
is just the need for a link to a .git file.

In Git, projects that contain version-controlled elements are called repositories. Different
branches are possible within a repository. Branches are utilized to have different develop-
ment lines in parallel. These point to a series of commits, which symbolize the individual

4 CHAPTER 2. BACKGROUND

Server Computer

Version Database

Version 3
Version 2

Version 1

4 Y
y A

Computer A Computer B

A A

Version Database | |4 »| | Version Database

Version 3 Version 3

|
Version 2 Version 2

|
Version 1 Version 1

Figure 2.1: Distributed Version Control Systems [10]

versions where changes have been made. A new commit can only be appended to an
existing commit in a branch. If several branches exist simultaneously, it is possible to
merge one branch’s commits into the other branch (i.e., the main branch) so that the
main branch now contains all commits of both branches.

2.2 Software Repository Platform

There are many different ways to manage a Git software repository. If collaborative
working is desired, it is worth considering a platform with a Git service. Such a platform
can either be used by a third party or self-hosted. Known platforms are GitHub [16],
GitLab [17] or Bitbucket [1] as third party platforms as well as self-hosted platforms like
Gitea [12]. The advantage of a platform with a Git service is that, in most cases, there
is more than just an overview of Git activities. It often also serves as a platform for
collaborative work.

Issues are a central part of this additional service. They help to record open work. These
tasks can be of different nature. In some platforms, it is also possible to assign tags to the
issues. These can be assigned as issues to indicate bugs, feature requests, or questions. In
an issue, the content of the issue can be discussed with the help of comments.

Pull requests or merge requests, as they are sometimes called, are also part of a Git
platform’s primary offering. Pull requests allow a planned merge into another branch.
They present an overview of the upcoming merge and give the possibility even to run
tests on some platforms. A comment function also allows commenting on the planned

2.3. SOFTWARE QUALITY METRIC 5

q%
c2b9e

98ca9 -+ 34ac2 - f30ab

87ab2

e

Figure 2.2: Git With Different Branches [11]

merge. On some platforms, this is even implemented in a way that feedback or reviews of
the code itself can be made.

2.3 Software Quality Metric

In the past, the ISO standards organization has been involved in determining software
quality. For this purpose, they have defined the following six high-level product qualities:
functionality, reliability, usability, efficiency, maintainability, and portability [8]. These
are accepted by educational experts and academic research [24]. In the revised edition of
these standards, these characteristics were defined as functional suitability, performance
efficiency, compatibility, usability, reliability, security, maintainability, and portability
[25].

For the assessment of the software quality, a tool is often used. In [42], a method was
developed to determine precisely this software quality in open source software projects.
The subsequent metrics were chosen to make a statement about the characteristics defined
in [8].

e Number of statements (counts the average number of executable statements per
component)
e Cyclomatic complexity

e Maximum levels (measures the maximum number of nestings in the control structure
of a component)

e Number of paths (counts the mean number of non-cyclic paths per component)

6 CHAPTER 2. BACKGROUND

e Unconditional jumps (counts the number of occurrences of GOTO)

e Comment frequency (this is defined as the proportion of comment lines to executable
statements)

e Vocabulary frequency (defined by [23] as the sum of the number of the unique
operands, nl, and operators, n2, that are necessary for the definition of the program.

e Program length (measures the program length as the sum of the number of occur-
rences of the unique operands and operators)

e Average size (measures the average statement size per component)

e Number of inputs/outputs (counts the number of input and exit nodes of a compo-
nent)

2.4 Code Complexity

A characteristic to examine and evaluate a code is the code complexity. In scientific work,
four methods of assessing code complexity are considered the most popular [44] [2]. These
methods include Mc Cabe’s cyclomatic complexity [32], Halsted’s programming effort
[23], statement count as well as Oviedo’s data flow complexity [36] [44]. The complexity
should help to evaluate the difficulty that programmers have in writing and understanding
programs [36]. This should lead to the development of more understandable methods and
programs.

Mc Cabe’s Cyclomatic Complexity

With his proposal to measure complexity, Mc Cabe wants to address the modularity
of programs. Complexity should be independent of the size of programs, which means
adding and removing functional statements does not change complexity. He justifies
this with the fact that a lot of time and effort at software engineering is invested in
testing and maintenance [32]. The degree of modularization should show how difficult a
system is to test and maintain. He bases the calculation of complexity on mathematical
preliminaries from Berge [4], where n represents the vertices, e the edges, and p the
connected components.

V(G)=e—n+p (2.1)
Mc Cabe applies this formula to the structure of programs and simplifies it to the following.
v=m+1 (2.2)

Thereby 7 reflects the number of predicates. This means that the cyclomatic complexity of
a structured program equals the number of predicates plus one, whereas compound pred-
icates such as IF C1 AND C2 THEN are treated as two predicates as they could be written
as IF C1 THEN IF C2 THEN [32]. The challenge with automatic detection of complexity
would be the recognition of predicates in different languages. Where predicates are de-
tected, it would also be necessary to detect whether they are predicates and how many
single predicates they account for.

24. CODE COMPLEXITY 7

Halsted’s Programming Effort

Halsted also developed a way to measure the complexity of programs [23]. He calls the
complexity of a program the programming effort. This is based on his measurement of
the volume of a program, which he defines as follows.

V= (N1 + N2)loga(m + n) (2.3)

where Halsted gives the following meaning to the variables

N7 = Number of distinct operators
N5 = Number of distinct operands
1, = Total number of operators
1o = Total number of operands

He now defines the programming effort as the ratio of the volume of the program in square
to the minimum possible volume of the program V*.

V2

E =
V*

(2.4)

Since it is difficult to calculate the minimum possible program volume, the following
approximation is often taken [44].

_ 11 No(N1 + No)loga(m +)
2772

E (2.5)

Statement Count

This way of determining the complexity of a program is probably the oldest one. A
significant advantage of this method is its straightforward approach because it only reflects
the number of all program statements. It is still needed to define for each language what a
statement is, but then this method is simple to determine the program’s complexity. The
notable advantage of the statement count as a complexity value is also its disadvantage.
The relatively superficial analysis of the count of statements can be seen as not profound
enough to determine a program’s complexity.

Oviedo’s Data Flow Complexity

Two assumptions are made for the data flow complexity of Oviedo [44].

1. It is easier to determine the definition-reference connections within a block than
between different block and

2. the number of different variables within a block is more important than the total
number of all references in a block.

8 CHAPTER 2. BACKGROUND

The data flow complexity within a block counts all previous definitions of locally exposed
variables in a block 7 that reach block i. The dataflow complexity of the entire program
is then defined as the sum of the complexities of all blocks. This measurement of com-
plexity has a simple approach compared to other complexities because it only considers
the definition of the variable and its references. For automatic evaluation of the complex-
ity, this approach has a significant advantage. One difficulty in automatically assessing
the complexity of the data flow could be the automatic delimitation of blocks and the
recognition of variables and their references in different programming languages.

Chapter 3

Related Work

The central part of this work is finding a method to collect the individual developers’
contributions and weight them to finally make a statement about the overall contribution.
In the past, this has been tried in several research projects. The main reason why this
work could not be based on an already developed method is the application for which the
method is used in this context. In the following part, various related works are presented
with their application and possible applications to this project.

[30] presents a list of different evaluation metrics. These include code contribution, code
complexity, as well as bug-related metrics. In contrast to others who have tried to assess
developers’ contributions, they try to have the application of these metrics validated by
team leaders who also assess the contribution themselves.

The authors of [3] develop in their study visualization possibilities of the contribution
behavior in open source repositories. The metrics lines of code (LOC) and number of
commits serve as a basis for determining the contribution. The study then builds on these
and examines the factors that make up the contribution, patterns in temporal contribution
behavior, and the context of the developer’s region.

The goal of [38] was to find a metric to evaluate students’ project code to quantify the
amount of work contributed by each team member. This tool developed in the study is
designed to help instructors evaluate each team member fair using quantitative measure-
ments and no longer purely subjectively. They base their quantified contribution on the
metrics number of commits, number of merge pull requests, number of files, total LOC,
and time spent.

The authors of [21] rely on a variety of data sources to determine the contribution. In
addition to the code-specific metrics extracted from the repositories, they also use the
sources mailing lists/forums, bug databases, wikis, and chats. The tasks of a developer
in this study are not only seen in programming. A developer contributes to a variety
of activities that involve both the process and the product. This is the reason for the
inclusion of other data sources.

10 CHAPTER 3. RELATED WORK

3.1 Discussion

Table 3.1 presents an overview of the related work, of the metrics used, and the use case
applied in the study. It can be seen that most of the metrics found in the literature
are based on the metric LOC. However, this metric often does not stand alone, as it is
considered to be not meaningful enough on its own. The other metrics used are discussed
in more detail below.

During the discussion in [30], it became clear that the two contribution metrics of code
contribution, which was measured in LOC, and average complexity per method were
the most popular among the project leaders. The other metrics, the introduced bugs
and bug fixing contribution contained weaknesses, and the leaders realized that it could
sometimes punish the wrong developers. To measure complexity, Mc Cabe’s Cyclomatic
Complexity (Section 2.4) of the added and changed methods was chosen. The presented
work is not applicable to the use-case of open-source repositories. Firstly, only Java code
is considered in the analysis, and secondly, there are bug databases in every case. For
open-source repositories, this is not necessarily the case. What is also seen is that the
social aspect is neglected. For future work, it is planned to include data of messenger
services and collaboration platforms like GitHub [16] and GitLab [17].

[3] has a different core objective than this work. The focus is on visualizations of the con-
tribution behavior and influencing factors. However, the determination and quantification
of the contribution are based on similar assumptions as in this thesis. Both focus on open
source repositories and can, therefore, use the same metrics. Hence, building on the met-
rics and calculations presented in this study is certainly useful. The following equation
illustrates the calculation of the contribution with the metrics’ commits and LOC.

» LOC(i) Commit(i) .
— 1 <1< 1
Contritl) = S~ T000m) T S, Commut(y L =TS (3.1)

n: total number of developers

[38] does not concentrate on open source repositories but has its focus on metrics, which are
all available in open source repositories. However, what is noticeable when calculating the
contribution is that the work is assumed to be constant, as in a school project. As shown
in Table 3.2, the individual values are assigned to a weight. All weights of a contributor are
then combined, which ultimately leads to one of the ratings excellent, good, satisfactory,
poor, and unsatisfactory. There is, consequently, no continuous numerical evaluation.
However, this is something that is needed for this project. Besides, in [38], a measurement
of the working time was suggested. This is based on the time patterns of the Git commits.
Still, with different commit patterns, it is impossible to tell how much working time is
behind a commit for each person. In addition to their Git metrics, they saw that these
metrics say not everything about a team member’s contribution. To address this challenge,
they propose the inclusion of a difficulty gauge to weight the Git metrics. This difficulty
gauge is based on the difficulty of the task assigned to the developer. For open source
repositories, however, there is no instructor or leader for each project who can quantify

3.1. DISCUSSION

Table 3.1: Comparison of Related Work

11

Work Parameters

Use-Case

Code Contribution
Average Complexity per Method
Introduced Bugs

Bug Fixing Contribution

In company assess-
ment of contribution
to give leaders more
statistical information

LOC

Number of Commits

Contribution behavior
and relationships in
open source reposito-
ries.

Number of Commits

Number of Merge Pull Requests
Number of Files

Total LOC

time spent

Objective contribu-
tion analysis of school
projects to support
the instructor rating
the participation of
the team members

Code and documentation repository:
Additions / Deletions / Changes / New file / New
directory / Bug creation / Bug fixing / Code doc-
umentation / Large commits / New documenta-
tion file / New translation file / New binary file /
Commit message / Reference to bugs

Mailing lists / forums:
Reply / New thread / Close lingering thread /
Flamewar participation

Bug database:
Report / Close / Comment / Close a bug that is
reopened

Wiki:
New page / Update page / Link to page

Internet Relay Chat:
Participation / Replies to directed questions

Full analysis of 48
sub-projects of the
GNOME project by
history of the source
code repositories,
mailing list archives
and bug reports.

12 CHAPTER 3. RELATED WORK

each task’s difficulty. Therefore, the approach of considering the difficulty in this way will
not be applicable in this context.

Commits / Merges / Files /month LOC / Time spent / | Weight age
month (C)* month (M)® (F)° month (L) day (T)¢

70+ 22+ 25+ 1k+ 8+ hrs. 1.0
(60 - 70) 20 - 22) [22 - 25) [0.9k - 1k) [7.5-8) 0.9
[50 - 60) [18 - 20) 20 - 22) 0.8k - 0.9k) [7-7.5) 0.8
140 - 50) 15 - 18) [17 - 20) 0.7k - 0.8k) [6.5-7) 0.7
130 - 40) [12 - 15) 15 - 17) 0.6k - 0.7k) [6- 6.5) 0.6
125 - 30) 10 - 12) 13 - 15) 0.5k - 0.6k) [5-6) 0.5
120 - 25) 8 - 10) 10 - 13) 0.4k - 0.5k) [4-5) 0.4
[15 - 20) 6 -8) [8 - 10) [0.3k - 0.4k) [3-4) 0.3
10 - 15) 4-6) 5-8) 0.2k - 0.3k) [2-3) 0.2
Below 10 Below 4 Below 5 Below 0.2k Below 2 hrs. | 0.1

Table 3.2: Weightage Scheme on Extracted Metric Data from [38]

The contributions analysis of [21] is definitely the most detailed one presented in this
chapter. A disadvantage of the many metrics used is that this method is not easily
applicable to other projects to be analyzed. In [21], the data basis was provided by
projects of the gnome ecosystem, where this data was available.

3.2 Implication

In their current form, all the methods presented are not simply applicable to a contribution
analysis engine, so their requirements are still met. In comparison, it becomes clear that
the LOC as a metric are present in all studies like a red thread. Therefore, it will be
useful to build on these metrics and other Git specific metrics. Other used metrics are
not convincing in their consistency of analysis, or they are not applicable because the data
is missing in open source repositories or because this analysis is only focused on a single
or few selected languages.

Chapter 4

Commit Evaluation Engine

This chapter presents the design of the commit evaluation engine. In Section 4.1 the
requirements that drove the engine’s development are described. Then Section 4.2 details
the full design with employed metrics and architecture. Finally, Section 4.3 presents the
implementation of the engine.

4.1 Requirements

The following Requirements (Req) were listed to guide the development of the engine’s
design and implementation.

Req 1 Clone Repository - Information Required: The engine shall be able to clone any
publicly available repository just by the provided Git URL. For example, clone the
repository from the following URL https://github.com/go-git/go-git.git

Req 2 Clone Repository - Elements: The engine shall only clone the part of the repos-
itory, that will be needed for the analysis. For example, if the analysis shall be
conducted on the master branch, only the master branch shall be cloned.

Req 3 Clone Repository - Frequency: The engine shall be built in a way that it must
clone the repository as rarely as possible but as often as needed.

Req 4 Update Repository: The engine shall be built in a way that it can update the
repository if it already exists without cloning it again.

Req 5 Analysis - Repositories: The engine shall be built in a way that it is capable of
analyzing any open source repository independent of chosen stack and languages.

Req 6 Analysis - Data: The engine shall only use data from Git itself and optionally
from platforms like GitHub [16].

13

14 CHAPTER 4. COMMIT EVALUATION ENGINE

Req 7 Analysis - Score: The engine shall provide a score of each contributor for any open
source repository. This score shall represent the contribution of the corresponding
contributor in relation to the total contribution of all contributors. The score shall
be computed in a way that is not exposable. A higher score shall always correspond
to a higher contribution.

Req 8 Analysis - Branch: The engine shall only analyze one branch. It shall be possible
to change the branch to analyze.

Req 9 Analysis - Time Frame: The engine shall offer an option to only analyze a repos-
itory within a certain time frame. It shall be possible to set an optional lower limit
of a starting point from which the repository shall be analyzed. It shall likewise be
possible to set an optional upper limit of an endpoint until the repository shall be
analyzed.

Req 10 Analysis - Platform Information: The engine shall offer an option to optionally
analyze the platform information in addition to the default Git analysis.

Req 11 Architecture - API: The engine shall be accessible through a REST API with
a GET endpoint. Through this API, it shall be possible to deliver the necessary
information to analyze the repository according to the configuration of the caller of
the endpoint.

Req 12 Architecture - Setup: The engine shall be built in a way that some configurations
of the backend itself can be made using environment variables.

Req 13 Architecture - Endpoints: The engine shall offer two endpoints via the REST
APL.

e One endpoint shall return the raw contributions per contributor

e One endpoint shall return the calculated score per contributor

Req 14 Architecture - Parameters - Repository: The requester of an analysis shall be
able to set the repository to analyze via the REST API endpoint.

Req 15 Architecture - Parameters - Time Frame: The requester of an analysis shall be
able to set the optional time frame for the analysis using a start and an end date
via the REST API endpoint.

Req 16 Architecture - Parameters - Branch: The requester of an analysis shall be able
to set the branch he wants to analyze via the REST API endpoint. If no branch is
set, the engine shall pick a default branch set from inside the engine.

Req 17 Architecture - Parameters - Platform Information: The requester of an analysis
shall be able to set whether he wants to analyze the repository with platform in-
formation via the REST API endpoint. The default should be not to integrate the
platform information into the analysis.

4.2. DESIGN 15

Input Repository Metric extraction Contribution calculation from metrics Share of contribution

il

o +E+@
i
®

Figure 4.1: Commit Evaluation Engine Flow

4.2 Design

The process of analysis in the engine is structured, as shown in Figure 4.1. The first
step is to get all the data needed, which is equivalent to cloning a Git repository. In a
second step, the required metrics out of various sources are extracted and collected. In a
third step, the summed metrics are offset against each other, resulting in a score for each
contributor. Finally, each contributor is given a share of the total contribution.

4.2.1 Metric

Developer contribution is very versatile. The development and existence of a project
depend on several factors. Thus, a developer no longer contributes only through written
code but also through other activities such as communicating and coordinating with other
people involved in the project. [21]

In this paper, we distinguish between two different types of metrics. One is Git and
repository-based and contains all metrics that can be read from a repository with Git.
Since the analysis engine is based on a Git repository, this Git analysis is possible for all
queries. The second source of metrics is platform-specific information. Known platforms
that offer Git project management are GitHub [16], GitLab [17], Bitbucket [1] and others.
All these platforms differ in their API. For each platform, the analysis must be imple-
mented again. Therefore it is not possible to include metrics of platform-specific data
for each repository to be analyzed. For the sake of completeness, in this section, we will
also have a look at code-specific metrics. However, we will not use these metrics for the
engine.

16 CHAPTER 4. COMMIT EVALUATION ENGINE

Git-specific metrics

Git is originally very decentralized. With the introduction of platforms, there has been
a more centralized approach to code storage and management. The approach of mutual
pulling code from other developers in a team, as Linus Torvalds once described it, has
receded into the background [43]. When cloning a repository or pulling from a different
source, only the version in the Git database will be updated. The individual Git interac-
tions of developers that take place on their own devices, such as switching a branch, will
not be shared with other sources. As an external party that clones the source code on
GitHub, limited access to the history of actions is available. With the reflog command, it
is possible to find most of the Git interactions, but these are only accessible on the device
on which the interaction was made. The following metrics are those, which are available
on all devices that clone the repository.

Git is structured in its version control system so that the smallest unit of change is a
commit. To contribute to a repository as a Git user, he must commit his changes. The
metric of the number of commits per person is therefore needed to calculate a contribution
to a project.

Merges also count as commits. The only difference between commits and merges is that
a merge inserts the existing commits from one branch into another branch. There are
thus two input branches and only one output branch. A merge does not necessarily
contain a contribution but only helps to gather the contributions and resolve any conflicts.
Branches, however, are an essential part of the version control system Git, which is why
merges are also necessary to arrive at an end product. In this analysis, merges must,
therefore, be taken into account.

Commits can vary greatly in size. It is up to each developer to decide how many changes
they want to include in a commit. Each commit contains certain changes, which are
reflected in LOC added and removed. As Kan mentioned in 2003, the measurement of a
person’s contribution is either possible through LOC or function points [28]. In previous
studies that tried to measure the contributions of a developer, the LOC were chosen as
the main metric [30] [21]. These commits consist of the additions and deletions. In this
study, additions and deletions are looked at separately and not as a difference (e.g., +12
-8 is not viewed as a contribution of +4) since this would allow for negative contributions,
which can happen during refactoring. This would encourage contributors simply to write
unnecessary long code since this would be valued more than short code. Rewriting code
in a more compact way would also count as negative contribution, which it is certainly
not.

The only time it is known that a commit surely does not end in a contribution is when
a revert is applied to that commit. Git offers this revert option, but it is no different
from a commit that inverts the last commit changes. Git suggests Revert "last commit
message" as the default commit message. Reverts would be found according to this
naming pattern. However, the commit messages can be freely customized, so it is no
longer possible to search for the commit message "revert” with a search function and find
all reverted commits with certainty. Therefore this metric would only apply to some cases

4.2. DESIGN 17

where the message is not changed and would allow for a bypass or even for faked reverts.
Since this would not be a fair evaluation scheme, it will not be used in this study.

Dangling commits also occur when a change is undone. The difference between reverts,
where a new commit is added, and the process of dangling commits is that the status
of an earlier commit is pushed as the new head. The commits that would have come
after this new head commit are thus truncated. There are also no longer references to
these objects. Therefore, they are generally removed from the Git garbage collector. In
theory, however, it is possible to retrieve these dangling commits if they have not yet
been removed. However, this requires Git commands, which can only be executed on the
computer the commits were truncated. Since the analysis engine clones the repository,
these dangling commits are not recorded. An execution of these commands on the servers
from which the repository was cloned would have been necessary. Since this is not possible,
this metric is not used in this analysis engine.

Squashes are needed when a combination of several small commits into one larger commit
is desired. From one point of view, squashes may reduce the complexity of countless
commits on different branches with merges and other actions, but with squashes also the
power of some features like git blame or git bisect is reduced [31]. In the end, it is not
generally possible to say whether a squash makes sense and that it brings the project closer
to its goal. It is quite possible that a squash is counterproductive for the VCS. It must
therefore be considered subjectively from case to case. Since case-by-case consideration
in an analysis engine is not possible, and the judgments must not be subjective, squashes
are not, considered.

Analysis on code-level

Another possibility to further analyze the contribution is to go into the commit’s content
and analyze and consider it as a metric. As [22] has already shown, it can be useful to
evaluate the content, punish created bugs, and rate commits that fix bugs better. However,
identifying bugs and finding the corresponding fixing is a challenge. The detection of
bugs just by going through the lines of code is very limited. Integrated development
environments (IDE) already support the detection of certain bugs in a similar fashion,
but the detected bugs are not very complex, but mostly just syntax errors. Parsing the
code to detect syntax errors alone requires a separate parsing method for each language.
Detecting bugs that are more complex than syntax errors requires a different approach.
One possibility is to maintain a bug database like it was done in [22]. During analysis,
a commit can then be checked against this database to see if a bug was introduced or
fixed with that commit. Another way to detect bugs is by running tests. However, these
tests must be written solidly so that they will detect the bugs in any case. So testing
software requires the execution of scripts. For this purpose, however, a configuration must
be made. This conflicts with the approach of a fully automatic evaluation using only the
repository address. Additionally, it would allow someone to execute malicious code in the
analysis engine.

Another way to analyze a commit specifically concerning Git is to examine the code for
conflicts. Merge conflicts can occur when Git cannot merge two existing branches on its

18 CHAPTER 4. COMMIT EVALUATION ENGINE

own. In such a case, Git merges the changes it can merge, and the other code snippets Git
cannot merge are inserted below each other, with both branches declared as such in the
code. The user must then resolve these conflicts on his own. However, it should be rare
that someone pushes changes with conflicts because development environments always
highlight such conflicts, and GUIs for Git warn to push the changes that way. Searching
for such conflicts in an open-source repository is, in almost all cases, useless, as they
simply do not exist. Therefore, taking this metric into account would only increase the
complexity and runtime of the repository analysis and would hardly bring any advantage.

Fundamentally, this analysis at the code level is one to check the code quality. The above
examples were simple executions of code quality determination. Another more advanced
way to determine code quality is via code complexity.

As described in the Chapter 2, there are four common methods to determine a code’s
complexity. A common feature of all methods is that they require the execution of a script.
Besides, all of the presented methods require an interpretation of the code to determine
its complexity. In order to apply such a method, the determination and interpretation
of a language are essential. Nonetheless, since Req 5 says that the engine should be able
to analyze all public repositories, it should be possible to determine all languages of all
repositories. There is also the difficulty that often several file types and languages are used
in one repository. The determination would be even more difficult if different languages
were used within a file. Even if this could be determined, one would have to decide on
an adequate method and apply it to all languages. This can be very tricky because the
complexity of HTML code is challenging to compare with Java code.

Exactly this difficulty seems to have been encountered by different already available tools.
These often only support a certain number of selected languages in the analysis of com-
plexity. This is also the case with general tools for determining code quality. A simple
automatic analysis without first configuring this code analysis engine is not possible. One
reason for this configuration is that with external tools, the execution of tests is part of
the analysis process. This is not compatible with the automatic execution as provided
for in the contribution analysis engine. Another argument against such tools is the per-
formance impact on the engine. As soon as tests have to be executed, the analysis takes
longer again. In our case, it is also desirable to trace the code quality back to different
contributors. This requires multiple executions of determining the code quality for each
version since these tools do not list the quality by contributor but by project or file or
function. However, since even a function can be written by several people, this assignment
to contributors is only possible if the code quality is searched for after each commit after
a change of the code quality.

Platform-specific metrics

In modern software development and especially open-source software development, a soft-
ware developer must now do more than just develop software. Writing code is now only
one activity besides communication, coordination, documentation, and many more [21].
A team that develops open-source software and only plans to code will quickly reach its
limits. Some of the other activities that an open-source software developer undertakes are

4.2. DESIGN 19

reflected in publicly available information on platforms such as GitLab [17], GitHub [16]
or Bitbucket [1].

Unfortunately, these platforms are not uniform, especially in their API. Also, not every
platform on which a Git repository is hosted has the same functionality that reflects this
additional activity. The central elements offered by a Git service platform include issues
and pull requests. If information is to be taken into account in the analysis platform, it is
important that it does not differ greatly from platform to platform. For this reason, this
analysis engine uses information that is also available on platforms that will be integrated
at a later point in time. GitHub was chosen as the first platform. The reason for this
choice is the size of GitHub. With over 40 million users and over 100 million repositories,
it is the largest platform providing a Git service [14, 27, 16].

The choice of metrics to determine the contribution based on platform information de-
pends on two factors. First, the metrics must be related to the contribution, ¢.e., they
must provide a benefit for achieving a project goal. Due to the diversity of the different
platforms that will be supported by the system in the future, it must be ensured that
the evaluation of platform information does not essentially differ. A different evaluation
of the contribution depending on which platform the repository is hosted on contradicts
the neutral analysis of the repository. For this reason, only information based on the
core functionalities of a platform and thus represented by almost all larger platforms are
chosen as platform information metrics.

A central element of a Git platform is an issue tracking system. Issues can be used to
keep track of bugs, enhancements, or other requests [13]. Issues are, consequently, very
versatile. A common feature of all possible applications is that an issue reflects work that
is still open. In case of a bug, it is a software malfunction that needs to be fixed. If it is an
enhancement, it requests an extension or improvement of the existing software. However,
not every issue brings the project closer to its goal. Since anyone can create an issue, issues
may be created with no or low priority for implementation. In general, issues with much
discussion can be considered relevant because several people have dealt with it. To give
an opinion on a comment without writing a new comment, GitHub, for example, allows
responding to a comment with reactions. Often the thumbs-up emoji is used to enhance
the importance of a comment. GitHub offers even more options for issues. For example,
tags can be assigned, or persons can be assigned to an issue. In this thesis, however, the
metrics of creating issues and adding comments are considered. These metrics contribute
to a discussion of work to be done, which brings the project closer to its goal, as errors
and opportunities for improvement can be identified and features requested by different
people can be weighted and inserted into a backlog.

The other central element of a Git platform are the pull requests or merge requests, as
they are called on some platforms. These allow a planned and structured merge to be
performed. A branch is selected to be merged into another one. The platform then
offers various overviews of this upcoming merge. For example, it can be seen which
commits will be added, which changes will be made at the code-level or whether merge
conflicts will occur. Furthermore, depending on the repository configuration, the branch
can be tested for correctness by executing automated tests. In addition to the automatic
possibility of having the code checked, these pull requests also allow for a code review

20 CHAPTER 4. COMMIT EVALUATION ENGINE

from other developers. In these code reviews, which can also be requested by the pull
request’s creator, the developers who submit a code review can add various comments.
Comments, suggestions for improvement, or requests for changes can be made down to
one line of code, which the creator of the pull request can then respond to. If a code
reviewer is satisfied with the code to be merged, he can approve the pull request. All
these functionalities of a pull request allow inserting code changes that have been checked
by several people in the existing code of another branch. In this thesis, not all possibilities
of pull requests are considered because they are only offered on some platforms or since
the analysis of the metric would take too long, as can be seen in the example of executing
tests. Therefore only the creation of a pull request, the state of the request, and code
reviews are considered as metrics in the category of pull requests.

4.2.2 Developer Contribution

The developer contribution should consist of the metrics mentioned in the previous chap-
ter. The goal is to use the existing metrics, which are very limited due to availability
or other reasons, to create a formula that precisely reflects the actual contribution of a
developer. For this reason, a formula has been developed, which was discussed with open-
source contributors, to compare their estimation of the reflection of the real contribution
to the calculated one.

As mentioned in the previous chapter, the following metrics have been defined as the
ones to be used. The total number of metrics to be used is divided into two groups, with
only the first (Git-specific metrics) used in each analysis and the second (platform-specific
metrics) only for those where this is desired.

Git-specific metrics:

e Changes
- Additions

- Deletions

e History
- Commits

- Merges
Platform-specific metrics:

e Issues
- Author of Issues
- Comments on Created Issue

- Written Comments

4.2. DESIGN 21

e Pull Request
- Author of Pull Request
- Activity on Created Pull Request

- Performed Code Reviews

All metrics are subordinated to categories in the above list. This subdivision and alloca-
tion to categories allow a better overview of the weighting of the individual metrics. The
weighting of the individual metrics is done in two stages. In the first stage, the weighting
within a category is defined, and in the second stage, the weighting among all categories.
A weight within a stage is always defined so that all weights can be added up to 1.

The contribution is then calculated in two stages in accordance with the defined weight-
ings. In the first step, the developer’s contribution to be analyzed is calculated as a
percentage of the category’s total contribution. In the second step, these calculated per-
centage contributions of a category are balanced against the categories’ previously defined
weightings. This results in the following formula for the contribution of a contributor.

Ctotal Me total

W,

me=0 me

Cdeveloper = E We X mc,ctotu.l e}
c=0 mc:0 wmc X mc

X O,

(4.1)

where Coepeioper = Calculated contribution of the developer

Ciotat = Total amount of categories

w. = Weight of the category c

¢ = Index of the category
m. = Index of the metric inside category ¢
Metotal = Lotal amount of metrics within category c

W, = Weight of the metric inside category c

0., = Value of the metric for the analyzed developer

O, = Total value of the metric for all developers

Analyzing the repository for each developer’s contributions using Equation 4.1 will result
in a list of each contributor with their percentage of the total contribution to the project
within the analyzed time frame. The following tables provide an overview of the categories
used as well as metrics with the corresponding weights. The weightings were developed in
a process in which they were initially determined based on [38] and self-assessment. They
were adjusted through applications in real projects with the agreement of open-source
contributors. Table 4.1 shows the distribution of the weights if no platform information
is to be analyzed and Table 4.2 shows the distribution of the weights if an analysis of the
platform information is made.

22 CHAPTER 4. COMMIT EVALUATION ENGINE

w. Category w,, Metric

0.55 changes
0.7 additions
0.3 deletions

0.45 history
0.7 commits
0.3 merges

Table 4.1: Weights for Analysis Without Platform Information

We Category w,, Metric
0.36 changes
0.7 additions
0.3 deletions
0.30 history
0.7 commits
0.3 merges
0.14 issues
0.5 author of issues
0.2 comments on created issue
0.3 written comments

0.20 pull requests
0.7 author of pull request
0.3 performed code reviews

Table 4.2: Weights for Analysis With Platform Information

Additionally to this metric weighting, there are also different weights of the pull requests
due to the activity on a pull request. A closed request counts 0.6; an open one counts
as one. If a pull request is merged, it counts 1.5 times. In addition to these states, the
activity of a pull request is also checked for approval of the request. If this is the case, the
value mentioned above is multiplied by 1.4. For example, an approved request, which was
closed again afterwards, receives a weight of 0.84 and an approved and merged request
receives a weight of 2.1. This multiplier is intended to promote agreement among the
developers and to assure the code quality since there is no other representation of code
quality in the evaluation.

4.2.3 Architecture
Language

As a backend language for the analysis engine, the language Golang was chosen. It is
characterized by its efficient and straightforward code. The still relatively young language

4.2. DESIGN 23

from 2009, which has released the first stable version in 2012, has excellent potential. Go’s
advantages, which are also used for this project, are the direct compilation to machine
code, which makes programs written with Go very fast and, as a second advantage, the
possibility of executing different methods concurrently using go routines. Especially in
a case where data is collected from different sources, sometimes different parts can be
executed simultaneously, and the results can be recombined with channels.

Git interactor

Since the engine is based on data and repositories available through Git, it is necessary
to interact with Git. This is the only way to clone repositories and read data from them.
Since Golang was chosen as language, a library for Go that meets these requirements was
obvious. The recommendation of Git is to use go-git [18]. One advantage of this library
is that it does not have any native dependencies. It is as well transparent to the standard
Golang performance analysis tooling like CPU, memory profilers, etc. [9].

Server

As an HTTP server for letting the users contact the backend via a REST API, the
gorilla/mux library [20] is chosen. It allows for the simple use cases it is needed for in
this project, like serving an HT'TP request multiplexer, routing the requests to the correct
controller in the backend, and returning the computed results.

Activity Flow

The activities related to the analysis of a repository are shown in Figure 4.2. To analyze
a repository, a user makes a request to the analysis engine. The analysis engine then
initiates two processes.

The first process takes care of platform information. It looks at whether the platform
information should be included in the analysis and, if so, whether the analysis engine
supports the platform. The desired information, namely the issues and pull requests, is
then requested and filtered by the platform. Filtering is done so that the analysis can be
performed within a certain period, as defined in Req 9.

The second one of these processes deals with the acquisition of the information available
from Git. The first step is to ensure that the analysis is performed on an up-to-date
repository. To do this, it is either cloned or updated. The next step is to loop through
the commits and extract the defined metrics.

Once both of these processes are completed, the collected platform information is ap-
pended to the Git information per Git user. The result is a list of all observed metrics
per Git user. Then the formula defined in Equation 4.1 is applied to calculate the con-
tribution. This contribution per Git user of the total contribution is finally returned as a
response to the user that made the request.

24

CHAPTER 4. COMMIT EVALUATION ENGINE

Git Platform

- collecting information
according to request response

T request for data >

Analysis Engine

f

collected platform information

platform isn't availabl
Pt e no platform information

—O—
-«—analyze p\aﬁcvm—oidon‘l analyze platform (

request to analyze clone / pull IOO.F' through comr_mts, COHEC.'
| . commits/merges/additons/deletions
repository repository & map them to git users

|
request for issues / map platform
response filter information —
pull requests users to git users weight contribution according
% > to the formula

list of git user and
their contribution

response

T

User

request with repository response
to analyze P!

Figure 4.2: Activity Flow Analysis Engine

4.3 Implementation

4.3.1 Cloning and Updating the Repository

As Req 2 defined, the analysis engine shall only clone the part of the repository that is
necessary for the analysis. Therefore, the cloning command is executed in a way that it
will clone the repository only with the branch to analyze. This branch is defined as the
one that is either set via the request or the default one from the environment variables
(Listing 4.1).

func getBranchToAnalyze(r xhttp.Request) string {

branchUrlParam := r.URL.Query () [”branch”]
// check whether the param was set. If it was
// return this branch name, else return the default one
if len(branchUrlParam) > 0 {
return branchUrlParam [0]
} else {
return os.Getenv (”GO_GIT_DEFAULT BRANCH")
}

Listing 4.1: Detection of the Branch to Analyze

The engine will first try to update the repository. If this process fails because of the error
that the repository does not exist yet, the engine will clone the repository. The cloning
will be executed so that the cloned repository will only contain one branch, which is the

R

4.3. IMPLEMENTATION 25

one defined earlier. To achieve this effect, the repository will be configured as a single
branch repository clone with the specific branch as this single branch (Listing 4.2). This
means only the history leading to the tip of a single branch is cloned. Further fetches
into the resulting repository will only update the remote-tracking branch for the branch
this option was used for the initial cloning. In go-git, there exist two possibilities to clone
a repository. Either it will be cloned into memory or to the disk in a defined directory.
The analysis engine will follow the second approach as this will fulfill Req 3, that a
repository shall be cloned as rarely as possible. If, in the future, when the repository is
deployed, only a limited amount of space on the disk is left, a procedure for the cleanup
of unused repositories must be developed. However, since only a part of the repositories
is cloned, this issue can be postponed for future work. The directory structure to the
cloned repositories will be built analogous to the structure of the GOPATH in the go
environment. The GOPATH environment variable is used to specify directories outside
of $§GOROOT that contain the source for Go projects and their binaries [19].

FExample of the directory structure:
e https://github.com/go-git/go-git.git
L BASE_PATH /github.com/go-git /go-git.

e https://gitlab.com/fdroid/fdroidclient.git
L BASE_PATH/gitlab.com/fdroid /fdroidclient.

func CloneRepository (src string , branch string) (xgit.Repository, error) {
folderName := src[8 : len(src)—4]
// clone just one branch
return git.PlainClone (os. Getenv ("GO_GIT_BASE_ PATH”)+” /”"+folderName ,
— false, &git.CloneOptions{
URL: src ,
Progress: os . Stdout ,
ReferenceName: plumbing.ReferenceName (fmt. Sprintf(”refs/heads/%s”,
< branch)),
SingleBranch: true,
)
}

Listing 4.2: Cloning the Repository as a Single Page Repository

If the repository already exists, the repository will only be fetched. This supports Req 3
to clone the repository as little as possible. Therefore, once the repository is cloned, it is
only fetched so that Git will update the remote changes in the local repository. However,
Req 16 makes this process more difficult because, in a request, a different branch was
selected for analysis than the one that has initially been cloned with the configuration
of the single-branch repository. Therefore, a simple switch of the branch is not possible
since the new branch may not even exist in the local repository. In this engine, this case
is solved by locally creating a new branch to which the corresponding remote branch’s
commit history is mapped (Line 10, Listing 4.3). If the branch is already present locally,
the Git will append the new commits to this existing branch if there are changes on the
remote. After updating the repository, the engine will checkout the selected branch to
analyze the correct one (Line 26, Listing 4.3).

W N =

-1 O G

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

26 CHAPTER 4. COMMIT EVALUATION ENGINE

func UpdateRepository (src string , branch string) (xgit.Repository, error) {
folderName := src[8 : len(src)—4]

repo, err := git.PlainOpen(os.Getenv(”GO_GIT_-BASE_PATH") + ”/” +
— folderName)
if err != nil {
return nil, err
}
// take just ome remote branch and assign it to a local branch with the
— same name
firstRefSpecArgument := fmt.Sprintf(”refs/heads/%s:refs/heads/%s”,
< branch, branch)
err = repo.Fetch(&git.FetchOptions{
RemoteName: ”origin”,
RefSpecs: [] config.RefSpec{config.RefSpec(firstRefSpecArgument)},
1)
if err != nil && err.Error() != 7already up—to—date” {
return repo, err
}
w, err := repo.Worktree ()
if err != nil {
return repo, err
}
// checkout the correct branch
err = w. Checkout(&git . CheckoutOptions{
Branch: plumbing . ReferenceName (
fmt. Sprintf(”refs/heads/%s”, branch)
)
Force: true,
)
return repo, nil
}

Listing 4.3: Updating the Repository

4.3.2 Git Analysis

Once the engine has cloned or updated the repository to be analyzed, the time range to
be analyzed is defined (Line 4-10, Listing 4.4). This time range is optionally provided as
a route parameter in the request. If not, the API uses the zero values of time.time for
the values since and until, which determine the time range. The defined time limits are
now passed to the Git log command. As the output of the Git log command, a list of all
commits of this branch is accessible. These commits are now looped through to extract
the desired metrics.

In this process, a map is built, containing the Git contributor as key and the summed
contribution metrics for this user as value. The commits are distinguished from merges
by the number of parent commit hashes. Commits have only one parent commit, whereas
merges have two (Line 23, Listing 4.4). The other Git metrics that are extracted are the

0 3 O U i W N —

4.3. IMPLEMENTATION 27

additions and deletions. These are called with the stats command for each commit (Line
28, Listing 4.4). The additions and deletions also distinguish between commit and merge.
Additions and deletions of a merge are calculated with a different factor than those of a
normal commit (Line 44, Listing 4.4). This is because in the stats of a merge, all changes
made to the commits on this branch before the merge are listed again. So this corresponds
to the size of a merge. Hence, the size is still considered because a larger merge also means
more work, for example, reviewing.

var timeZeroValue time.Time
var options git.LogOptions

if since != timeZeroValue {
options. Since = &since
¥

if until != timeZeroValue {
options. Until = &until
}

commits, err := repo.Log(&options)

err = commits.ForEach(func(c *object.Commit) error {
author := Contributor{
Name: c¢.Author.Name,
Email: c¢.Author.Email,

}

merge = 0
commit = 1

if len(c.ParentHashes) > 1 {
merge = 1
commit = 0

}

stats, err := c.Stats()
if err != nil {

return err
}

changes := CommitChange{
Addition: 0,
Deletion: 0,

}

// count the lines if its not a merge, otherwise use a factor
if merge = 0 {
for index := range stats {
changes. Addition += stats[index]. Addition
changes.Deletion += stats[index]. Deletion
}
} else {
for index := range stats {
changes. Addition += int (float64 (stats[index]. Addition) =x
— mergedLinesWeight)
changes. Deletion += int (float64 (stats[index]. Deletion) =
— mergedLinesWeight)

47
48
49
50
51
52
93
54
95
56
o7
58
99
60
61

62

63
64
65
66
67
68
69

0 3 O U i W N —

o e e T
DU W - OO

28 CHAPTER 4. COMMIT EVALUATION ENGINE

¥
}
if _, found := authorMap[author]; !found {
authorMap [author] = Contribution{
Contributor: author,
Changes: changes ,
Merges : merge ,
Commits : commit ,
}
} oelse {
authorMap [author] = Contribution {
Contributor: author,
Changes: CommitChange{
Addition: authorMap [author].Changes. Addition + changes.
— Addition ,
Deletion: authorMap[author].Changes. Deletion + changes.
— Deletion
}s
Merges: authorMap [author]. Merges + merge,
Commits: authorMap [author].Commits + commit,
}
}
return nil
19

Listing 4.4: Git Analysis

4.3.3 Platform Information From GitHub

Depending on the configuration in the request, the analysis engine also supports the inclu-
sion of platform information. As the first platform, only GitHub is currently supported.
With its GraphQL API, it is possible to retrieve only the information needed. All issues
and pull requests with their associated information are collected in multiple requests.
In this implementation explanation, only the process of data collection for the issues is
explained. The process of obtaining the pull request data works analogously.

var timeZeroValue time.Time

sinceFilterBy := 77
pageLength := 100

if since != timeZeroValue {
sinceFilterBy = ‘since: ”‘ 4+ since.Format(time.RFC3339) + ‘7°
}
query := fmt.Sprintf(
H
repository (owner:"%s”, name:"%s”) {

issues (first:%d, filterBy: {%s}) {
pagelnfo {
endCursor
hasNextPage

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

W N =

RN

4.3. IMPLEMENTATION 29

}
nodes {
title
number
author {
login
}
comments (first: %d) {
pagelnfo {
endCursor
hasNextPage
}
nodes {
author {
login
updatedAt
}
}
updatedAt
}
}
}
|
repositoryOwner , repositoryName, pageLength, sinceFilterBy , pageLength)
resp, err := manualGithubGQL (query)
if err != nil {
return [] GQLIssue{}, err
}
var response RequestGQLRepositoryInformation
if err := json.Unmarshal(resp, &response); err != nil {
return [] GQLIssue{}, err
}

Listing 4.5: GitHub Initial Issues Request

The data received from GraphQL request is now checked whether all data has been sent
or whether further data must be collected in additional requests. GitHub only returns
all data in pages with a maximum length of 100 entries. So if there are more than 100
issues or issue comments, there is to need to fetch them in multiple requests. If more than
100 issues or issue comments are present, GitHub will set the entry "hasNextPage” to
true and use "endCursor” to provide a pointer to the next page’s beginning. In this case,
an additional fetch is executed. In Listing 4.6, data is fetched and added to the already
fetched data. This is repeated as long as GitHub indicates a next page, and, hence, not
all data has been sent yet.

issuesAfter := 77

for ok0 := true; ok0O; okO = response.Data.Repository.Issues.Pagelnfo.
— HasNextPage {
if response.Data.Repository.Issues.Pagelnfo.HasNextPage {
issuesAfter = response.Data.Repository.Issues.Pagelnfo.EndCursor
issueRefetchQuery := fmt.Sprintf(

B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45

46

47
48
49
50

30

}

CHAPTER 4. COMMIT EVALUATION ENGINE

repository (owner:"%s”, name:"%s”) {
issues (first:%d, filterBy: {%s}, after: "%s”) {
pagelnfo {
endCursor
hasNextPage

nodes {
title
number
author {
login
}

comments (first: %d) {
pagelnfo {
endCursor

hasNextPage
}
nodes {
author {
login
updatedAt
¥
}
updatedAt

}
}
} ¢, repositoryOwner, repositoryName , pageLength, sinceFilterBy ,
< issuesAfter , pageLength)

resp, err := GClientWrapper.Query(issueRefetchQuery)

if err != nil {
return response, err

}

var refetchResponse RequestGQLRepositoryInformation

if err := json.Unmarshal(resp, &refetchResponse); err != nil {
return response, err

}

response . Data. Repository.Issues.Nodes = append(response.Data.
— Repository.Issues.Nodes, refetchResponse.Data.Repository.
< Issues.Nodes...)

response .Data. Repository.Issues.Pagelnfo = refetchResponse.Data.
— Repository.Issues.Pagelnfo

return response, nil

Listing 4.6: GitHub Issues Pagination

The approach to fetch the missing issue comments works similarly. The engine loops
through all issues and checks if there is more to fetch from the corresponding issue com-
ments. If so, the issue comments are fetched for this issue and appended to the previously
collected data until the parameter "hasNextPage” of the specific issues issue comments is

false.

S T W N —

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42

43

44
45
46
47
48

4.3.

IMPLEMENTATION 31

issueCommentsAfter :=

var

for

}

9

issueToRefech int

index := range response.Data.Repository.Issues.Nodes {
issueToRefech = response.Data.Repository.Issues.Nodes[index].Number
for okl := true; okl; okl = response.Data.Repository.Issues.Nodes[index
< |].Comments. PageInfo . HasNextPage {
if response.Data.Repository.Issues.Nodes|[index].Comments. Pagelnfo.
— HasNextPage {

issueCommentsAfter = response.Data.Repository.Issues.Nodes]|
— index].Comments. PageInfo . EndCursor
specificIssueQuery := fmt.Sprintf(
H
repository (owner:"%s”, name:"%s”) {
issue (number: %d) {
title
number
author {
login

}
comments(first: %d, after: "%s”) {
pagelnfo {
endCursor

hasNextPage
nodes {
author {
login
}
updatedAt
}
updatedAt

}

}

+¢, repositoryOwner, repositoryName, issueToRefech, pageLength,
— issueCommentsAfter)

resp, err := GClientWrapper.Query(specificlssueQuery)
if err != nil {

return response, nil
¥

var refetchResponse RequestGQLRepositoryInformation

if err := json.Unmarshal(resp, &refetchResponse); err != nil {
return response, nil

}

response . Data. Repository.Issues.Nodes[index |. Comments. Nodes =
— append (response.Data.Repository.Issues.Nodes|[index].
— Comments. Nodes, refetchResponse.Data.Repository.Issue.
< Comments. Nodes . ..)

response . Data. Repository.Issues.Nodes|[index |. Comments. PageInfo
< = refetchResponse.Data. Repository.Issue.Comments. Pagelnfo

return response, nil

R 0 3 O Ut =W N

EN|

© 00 ~J O Uk W N —

32 CHAPTER 4. COMMIT EVALUATION ENGINE

Listing 4.7: GitHub Issue Comments Pagination

After all data has been collected, the data is additionally filtered. GitHub offers only one
filter since, so there is the need to loop through all issues and issue comments again to
check whether they belong to the investigated time frame.

var timeZeroValue time.Time
var filteredIssues []GQLIssue

for index := range issueEdges {
if (issueEdges[index].UpdatedAt. After(since) || since = timeZeroValue)
— && (issueEdges[index].UpdatedAt. Before(until) || until =
— timeZeroValue) {
filteredIssues = append(filteredIssues , issueEdges[index])
}
}

return filteredIssues

Listing 4.8: GitHub Filter Issues

var timeZeroValue time.Time
var filteredIssueComments []GQLIssueComment
for index := range comments {
if (comments|[index].UpdatedAt. After(since) || since = timeZeroValue)
— && (comments|[index].UpdatedAt.Before(until) || until =
— timeZeroValue) {
filteredIssueComments = append (filteredIssueComments, comments |
— index])
}
}
return filteredIssueComments

Listing 4.9: GitHub Filter Issue Comments

Since GitHub only assigns this data to GitHub users and not to Git users, there is the
need to map the GitHub user data to the Git users that have already measured their Git
contribution. However, it is not possible to read the corresponding Git user to a GitHub
user. The mapping in this engine works as in Listing 4.10. In a request, the engine looks
in a specific repository for a commit made by a Git user with the same email address
as the Git user for which the corresponding GitHub user is being looked for (Line 7,
Listing 4.10). With this mapping, the platform information collected about the Git user
can be added to the Git contributions. However, be aware that the collected platform
information for a GitHub user is only added to a single Git user since a GitHub user can
manage multiple Git users.

query := fmt.Sprintf(

repository (owner:”%s”, name:"%s”) {
ref (qualifiedName: ”master”) {
target {

on Commit {
history (first: 1, author: {emails: "%s”}) {
nodes {
author {

4.3. IMPLEMENTATION 33

10 name

11 email

12 date

13 user {

14 login

15 }

16 }

17 }

18 }

19 }

20 }

21 }

22 }

23 }¢, repositoryOwner, repositoryName, email)

24

25|resp, err := GClientWrapper.Query (query)

26| if err != nil {

27 return 77, err

28]}

29| var response RequestGQLRepositoryInformation

30| if err := json.Unmarshal(resp, &response); err != nil {

31 return 77, err

32|}

33| if len(response.Data.Repository.Ref.Target.History.Nodes) < 1 {

34 return 7”7, errors.New(”could not find user”)

35 }

36| return respomnse.Data.Repository.Ref. Target.History.Nodes[0]. Author. User.

— Login, nil
Listing 4.10: GitHub User to Git User Mapping
4.3.4 Concurrency
Another requirement defined for the thesis in Section 1.1 is that the system must be
scalable. A central feature of Go is the support of concurrency with so-called go routines.
Many processes in the analysis engine depend on a sequential sequence. However, there
are two time-consuming sequences that can be executed in parallel. The repository cloning
and updating as well as collecting the Git metrics (Line 11, Listing 4.11) can be executed
in parallel to collecting the platform information (Line 22, Listing 4.11). However, since
the platform information does not have to be included in each case, this go routine is
only executed if needed. If this is not the case, the channel on which the data would be
returned by the routine will be closed immediately (Line 6, Listing 4.11), and the results
on the channel will not be waited for (Line 35, Listing 4.11). On Line 43, Listing 4.11,
the results of the channels of the two go routines are listened to. These are then assigned
to the already initialized variables. With these variables updated, the analysis engine
continues in a single sequence.
1| // make the channels for both go routines (analyze repo / platform

<~ information)

2| gitAnalyzationChannel := make(chan GitAnalyzationChannel)
3| platformInformationChannel := make(chan PlatformInformationChannel)

4

13
14
15
16
17
18
19
20

21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

93

34 CHAPTER 4. COMMIT EVALUATION ENGINE

// if we don’t have to analyze the platform , close the channel again since
— we don’t need it

if lanalyzePlatformInformation {
close (platformInformationChannel)

}

// go routine to analyze the repository using git independently from main
— thread

go func() {
routineContributionMap , routineErr := analyzeRepositoryFromString (

— repositoryUrl, commitsSince, commitsUntil, branch)
gitAnalyzationChannel <— GitAnalyzationChannel{

Result: routineContributionMap ,

Reason: routineErr

}

close (gitAnalyzationChannel)

HO

// execute go routine to fetch the platform information only when the
— platformInformation flag is set
if analyzePlatformInformation {
go func() {
routinelssues , routinePullRequests, routineErr :=
— getPlatformInformation (repositoryUrl, commitsSince,
— commitsUntil)

platformInformationChannel <— PlatformInformationChannel{
Resultlssues: routinelssues ,
ResultPullRequests: routinePullRequests,
Reason: routineErr |

}

close (platformInformationChannel)

// set the openness of the to the default value
chanellOpen := true

chanel20pen := analyzePlatformInformation

// initialize the return variables for the go routines

var contributionMap map|[Contributor] Contribution

var issues []|GQLIssue
var pullRequests [] GQLPullRequest
// wait for the results of both go routines
for chanellOpen || chanel2Open {
select {
case msgl, okl := <—gitAnalyzationChannel:
if lokl {
// if the channel is closed set the flag to false
chanellOpen = false
} else if msgl.Reason != nil {
// error handling
if strings.Contains(msgl.Reason.Error (), "authentication”) {
makeHttpStatusErr (w, msgl.Reason.Error (), http.
< StatusUnauthorized)
} else {

54

95
o6
57
58
99
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75

4.3. IMPLEMENTATION 35

makeHttpStatusErr (w, msgl.Reason.Error (), http.
< StatusInternalServerError)

}
return

} else {
// save the return wvalue to the initialized wvariable
contributionMap = msgl. Result

}

case msg2, ok2 := <—platformInformationChannel:

if lok2 {
// if the channel is closed set the flag to false
chanel20pen = false

} else if msg2.Reason != nil {
// error handling
makeHttpStatusErr (w, msg2.Reason.Error (), http.

— StatusInternalServerError)

return

} oelse {
// save the return wvalue to the initialized wvariable
issues = msg2. Resultlssues
pullRequests = msg2. ResultPullRequests

}

}
¥

Listing 4.11: Git Analysis and Platform Information concurrently

The performance analysis in Section 5.1.2 showed that analyzing the Git commits se-
quentially caused a considerable performance impact. To optimize this, the commits are
analyzed concurrently with the help of go routines, and their results are sent back via
channels. Go follows the principle that all channels should not be closed by a receiver
because a go routine trying to send on a closed channel will cause an error. In the case
of the analysis engine, however, this has to be done this way. Inside a go routine that
analyzes the commit, it is impossible to say whether this go routine will be the last one
sending on this channel. For this reason, the engine counts how many commits are ana-
lyzed (Line 2 & 4, Listing 4.13) and how many responses have already been sent over the
channel (Line 68 & 89, Listing 4.13). When this number is equal, the channel is closed
(Lines 90-92, Listing 4.13). Thereby it is ensured that in a go routine in each case exactly
once is sent over a channel.

contributionChannel := make(chan ContributionChannel)
commitCounter := 0
err = commits.ForEach(func(c *object.Commit) error {
commitCounter4++
go func() {
author := Contributor{

Name: c¢.Author.Name,
Email: c.Author.Email,

}

merge := 0
commit := 1

if len(c.ParentHashes) > 1 {

36 CHAPTER 4. COMMIT EVALUATION ENGINE

15 merge = 1

16 commit = 0

17 }

18

19 stats , err := c.Stats()

20 if err != nil {

21 contributionChannel <— ContributionChannel{

22 Result: Contribution{

23 Contributor: Contributor{

24 Name: 77,

25 Email: 77,

2 .

27 Changes: CommitChange{

28 Addition: 0,

29 Deletion: 0,

30 }

31 Merges : 0,

32 Commits: 0,

33 Iz

34 Reason: err,

35

36 1 else {

37 changes := CommitChange{

38 Addition: 0,

39 Deletion: 0,

40 }

41

42 // count the lines if its not a merge, otherwise use a factor

43 if merge = 0 {

44 for index := range stats {

45 changes. Addition += stats[index]. Addition

46 changes. Deletion += stats[index]. Deletion

47

48 } oelse {

49 for index := range stats {

50 changes. Addition += int (float64 (stats[index]. Addition)
— % mergedLinesWeight)

51 changes. Deletion += int (float64 (stats[index]. Deletion)
— % mergedLinesWeight)

52 }

53 }

54

55 contributionChannel <— ContributionChannel{

56 Result: Contribution{

57 Contributor: author,

58 Changes: changes ,

59 Merges: merge ,

60 Commits : commit ,

61 b

62 Reason: nil ,

63 }

64 }

65 10

66 return nil

67| })

68| answersReceived := 0

69
70
71
72
73
74
75
76
7
78
79
80

81

82
83
84
85
86
87
88
89
90
91
92
93

0 3 O Ui W N -

4.3. IMPLEMENTATION 37

for res := range contributionChannel {
if res.Reason != nil {
return nil, err
} oelse {
author := res.Result.Contributor
if _, found := authorMap [author]; !found {
authorMap [author] = res.Result
} else {
authorMap [author] = Contribution{
Contributor: author,
Changes: CommitChange{
Addition: authorMap [author].Changes. Addition + res.
< Result.Changes. Addition ,
Deletion: authorMap[author|.Changes. Deletion + res.
— Result.Changes. Deletion ,
},
Merges: authorMap [author]. Merges + res.Result.Merges,
Commits: authorMap [author |. Commits + res.Result.Commits,
}
¥
}
answersReceived++
if commitCounter = answersReceived {
close (contributionChannel)
}
}

Listing 4.12: Concurrency Adaption go-git

However, this performance optimization measure has a more vital stability impact on the
developed software. The library go-git is not designed to perform this analysis concur-
rently. Go detects this weakness in the execution of tests. When performing the analysis
with the API, Go does not detect this and allows the software to be executed. Only in
very few cases (once in several million analyzed commits) this error could be reproduced.
A modification of the go-git library, which foresees the use of a sync map instead of an
ordinary map, has fixed this bug and enhanced the library (Listing 4.13).

"bytes”
9 io ”
?sort”
7sync”

encbin ”encoding/binary”

@@ —56,7 +57,7 Q@ type Memorylndex struct {
PackfileChecksum [20]byte
IdxChecksum [20] byte

offsetHash map[int64 | plumbing . Hash
offsetHash sync . Map
offsetHashIsFull bool
}
@ —127,10 4+128,7 QQ func (idx *MemoryIndex) FindOffset (h plumbing.Hash) (
— int64, error) {

17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
93
54
95
96
o7
58
99
60
61
62
63
64
65
66
67
68
69
70
71

38

CHAPTER 4. COMMIT EVALUATION ENGINE

if lidx.offsetHashIsFull {
// Save the offset for reverse lookup
if idx.offsetHash =— nil {
idx . offsetHash = make(map[int64] plumbing . Hash)
}

idx . offsetHash [int64 (offset)] = h
idx . offsetHash . Store (int64 (offset), h)

}

return int64 (offset), nil

@@ —-169,39 +167,29 @@ func (idx xMemoryIndex) getCRC32(firstLevel ,

< secondLevel int) uint32 {

// FindHash implements the Index interface.
func (idx *MemoryIndex) FindHash(o int64) (plumbing.Hash, error) {

var ok bool
if idx.offsetHash != nil {
if hash, ok = idx.offsetHash[o]; ok {
return hash, nil
}
if hash, ok := idx.offsetHash.Load(o); ok {
return hash.(plumbing.Hash), nil
}
// Lazily generate the reverse offset/hash map if required.
if lidx.offsetHashIsFull || idx.offsetHash = nil {
if lidx.offsetHashIsFull {
if err := idx.genOffsetHash(); err != nil {
return plumbing.ZeroHash, err
¥
hash, ok = idx.offsetHash[o]
}
if lok {
return plumbing.ZeroHash, plumbing.ErrObjectNotFound
if hash, ok := idx.offsetHash.Load(o); !ok {
return plumbing.ZeroHash , plumbing.ErrObjectNotFound
1 else {
return hash.(plumbing.Hash), nil
}
}
return hash, nil
return plumbing.Hash{}, nil
}
// genOffsetHash generates the offset/hash mapping for reverse search.
func (idx xMemoryIndex) genOffsetHash() error {
count , err := idx.Count()
if err != nil {

var hash plumbing.Hash

return err

}

72
73
74
75
76
7
78

79

80
81
82
83
84

N O O =~ W N~

4.3. IMPLEMENTATION 39

idx . offsetHash = make(map[int64 | plumbing.Hash, count)
idx . offsetHashIsFull = true

var hash plumbing.Hash
@@ —211,7 +199,7 @@ func (idx *MemoryIndex) genOffsetHash () error {

for secondLevel := uint32(0); i < fanoutValue; i++ {
copy (hash [:], idx.Names|[mappedFirstLevel][secondLevelx
— objectIDLength :])
offset := int64 (idx.getOffset (mappedFirstLevel, int(secondLevel
=)))
idx . offsetHash [offset] = hash
idx . offsetHash . Store (offset , hash)
secondLevel4+
}

Listing 4.13: Concurrency Adaption go-git Library

4.3.5 Requests

The analysis engine has two endpoints from which the data can be retrieved. The first
one collects only the contributions information needed for the evaluation and returns this
list. Depending on whether the platform information is to be included in the analysis, it
will also be included in the response.

GET /contributions

Collected contribution metrics for each Git user

Parameters
repositoryUrl required url of .git file of the repository
since optional date at which the analysis should start in RFC3339
format
until optinoal date at which the analysis should end in RFC3339
format
platformInformation optinoal flag whether platform information such as issues and
pull requests should be analyzed
branch optinoal name of the branch that should be analyzed
Response
[// list of each contributing git user
{” gitInformation”: {
“contributor”: {
"name”: string // name of the git user,

"email”: string // email of the git user

I

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

1
2
3
4
5

40 CHAPTER 4. COMMIT EVALUATION ENGINE

"changes”: {

7addition”: int // added lines
"deletion”: int // deleted lines

}s

"merges”: int // amount of merges,
"commits”: int // amount of commits

s

"platformInformation”: {

"userName”: string // platform wusername,

7issuelnformation”: {

“author”: []int // list of amount of comments of each created issue
“commenter”: int // amount of comments written

}

)
ullRequestInformation”: {

7author”: [// list of pull requests the author created

"state”: string // current state of pull request
"reviews”: []string // reviewing events on pull request

}
]

"reviewer”: int // amount of reviews written

}
}
}
}

Listing 4.14: Response Structure Collected Metrics

The second endpoint returns the results as a share of the total contribution for each Git

contributor.

GET /weights

Listing of the share of the total contribution by each Git user

Parameters

repositoryUrl required
since optional
until optinoal

platformInformation optinoal

url of .git file of the repository

date at which the analysis should start in RFC3339
format

date at which the analysis should end in RFC3339
format

flag whether platform information such as issues and
pull requests should be analyzed

branch optinoal name of the branch that should be analyzed
Response
[// list of each contributing git user
{
"contributor”: {
"name”: string // name of the git user,

"email”: string // email of the git wuser

© 0D

4.3. IMPLEMENTATION

}

"weight”: float // [0,1] representing the share of the contribution

}
]

41

Listing 4.15: Response Structure Computed Score

42

CHAPTER 4. COMMIT EVALUATION ENGINE

Chapter 5

Evaluation and Discussion

This chapter is dedicated to the evaluation of the developed analysis engine. In the first
part, different areas of the program are examined for their performance. The goal was to
find out which executions influence the performance most and if they can be optimized.

The second part describes the process of the certification of the weigths, which is needed
for the developed Equation 4.1 to calculate the contribution. On a use-case the analysis
engine was tested with a repository. The results were discussed with the corresponding
repository owners. In an iterative process the weights were adjusted so that the calculated
contribution matched the perceived contribution of the repository owners.

5.1 Performance Testing

To test the performance of the analysis engine, different aspects of the engine were exam-
ined. Specifically, the following aspects:
e Cloning and updating the repository

e Analyzing the repository in a way to determine the performance impact of each
metrics

— Once we will analyze the whole repository

— Once we will analyze a real-world usage example of analyzing a time period of
3 months

e Fetching platform data (e.g., GitHub)
e Mapping platform to the information collected from Git

e (Calculating the contribution score with the formula that weights the raw contribu-
tion of each developer

43

44 CHAPTER 5. EVALUATION AND DISCUSSION

These performance tests were executed on real-world examples of open source repositories.
Four projects were selected to represent different groups of repository size, small, medium,
large, very large. The smallest group of repositories will be represented by the moment.js
[33] project on the moment repository from moment on GitHub. This is a JavaScript
library to format data, which is very popular in the JavaScript developer community. At
the time of measurement, there were 3’953 commits in the history of the master branch.

The react native project on Facebook’s GitHub repository react-native [7] will represent
the next size of the repositories. This project, which is still in development for years, is
based on the popular JavaScript library react and uses this structure to develop native
apps for mobile devices. At the time of measurement, there were 21’167 commits in the
history of the master branch.

Nextcloud is one of the larger open source projects of today [34]. As a spin-off and further
development of the ownCloud [37] project, Nextcloud wants to make the cloud universe
open-source and self-hostable. In addition to the server repositories from Nextcloud to
GitHub that are being investigated in this context, further open-source projects are being
developed to complement the server’s functionality. At the time of the measurement,
there were 55’546 commits in the history of the master branch.

The largest repository examined in this measurement is the rust programming language
[41]. With 129’179 commits on the master branch at the time of the measurement, this
repository represents the largest open-source repositories. The Linux repository is not
examined as a representation of huge repositories. Although it is much larger than the
rust repository with 980’000 commits, there are hardly any other open-source repositories
of this size, which could be represented by the Linux repository.

All the mentioned performance tests were executed locally on the same computer. Goland
[26] was executed on the computer in whose console the analysis engine was running.
Besides, the postman [40] program was executed, which sends the requests to the REST
APIL. In order to record the results, Google Sheets was executed in a browser. Go internal
timing tools determined the duration of the execution of each aspect in milliseconds (ms).
The specifications of the hardware utilized during the tests were an Intel (R) Core (TM)
i7-4771 @ 3.50 GHz with 32 GB of RAM, and Git version 2.17.1.windows.2.

5.1.1 Cloning / Updating Repository
Cloning

The first test evaluated the implemented analysis engine’s performance when cloning a
repository that is not yet locally present (i.e., stored in the local machine). The engines
cloned the repository with the configuration of a single branch repository and its selected
branch. Each of the repositories listed in the last section was cloned ten times to estimate
the upper and lower bounds for the execution time. As expected, the cloning duration
depends on the repository size, as depicted in Figure 5.1. There, the z-axis represents
the different repositories, and the y-axis represents the duration of the repository cloning
to the local disk. It has also been noticed that multiple consecutive cloning of large

5.1. PERFORMANCE TESTING 45

repositories became a longitudinal process. For this reason, the repositories were cloned
over a more extended period of time to avoid throttling. This should also provide a fair
comparison between the cloning durations.

T T
15,257
moment.js - Ir :
93,643
react-native |- W -
5.63 - 10°
Nextcloud | LI
4.21-10°

rust - o 1

| | | | | | |

0 1 2 3 4 5 6
duration [ms] 109

Figure 5.1: Execution Time: Cloning Repository

Updates

If the repository already exists locally, it will only search for updates. It is possible that in
such a case, new commits will be fetched because the local branch is no longer up to date
with the remote branch or because a new branch needs to be fetched because the branch
under investigation has switched since cloning. In the performance analysis, only the case
that no new commits are available was measured, i.e., the pure checking of updates. In
the event that new commits were available, they could not be reliably tested multiple
times so that each test would be performed under the same conditions.

To measure this process, the measurement was divided into three different test executions
to draw better conclusions. In the first test execution of this process, the duration of
the repository’s pure opening was tested. The tests show an execution time of 0 to 1 ms
regardless of the size of the repository. In the second test execution, the checking of
updates was added after opening the repository (Figure 5.2). Finally, in the third test
execution, it was checked how long it takes to open the repository and select the correct
branch (Figure 5.3). It turned out that most of the time was due to selecting the correct
branch. Opening the repositories and checking for updates induced only a small part of
the total duration.

46 CHAPTER 5. EVALUATION AND DISCUSSION

623
moment.js - *lﬂ * % i
1,015
react-native - m ° 8

990
Nextcloud | + =

2,07
rust |- o -

| | | | |
0 1,000 2,000 3,000 4,000 5,000
duration [ms]

Figure 5.2: Execution Time: Checking for Updated Repository Version

191
moment.js - |» :

1,844

react-native |- ® -

3,165
Nextcloud | F R

6,630 m

rust o

| | |
2,000 4,000 6,000
duration [ms]

o

Figure 5.3: Execution Time: Checking Out Correct Branch of Repository

5.1.2 Analyzing the Repository

All Metrics

When the first tests of all metrics were carried out for a time period of three months, it
was discovered that an analysis of 690 commit already took about 80 seconds. With a
linear projection to repositories of 120’000 commits, this would correspond to a duration
of about 4.5 hours. A further check of the code for optimization possibilities showed that
a parallel extraction of the metrics from a commit could reduce this time massively. An
implementation with go routines, which allow this concurrency, allowed to reduce the
duration from about 80 seconds to 25 seconds. All other tests were executed with the
implementation of go routines.

5.1. PERFORMANCE TESTING 47

_ +1.03 -10°
moment.js - -
5.84 - 10°
react-native - 1
2.16 - 108
Nextcloud | .
6.82 - 106
rust |- |
| | | |
0 2 4 6
duration [ms] 109
T T T T T
732
moment.js - + :
26,578
react-native |- + -
99,602
Nextcloud | m R
4.16 - 10°
rust - 1
| | | | |
0 1 2 3 4
duration [ms] 109

Figure 5.4: Execution Time: Collecting All Git Metrics (Lifetime vs. 3 Months)

No Metrics

This test showed the amount of time an analysis takes without extracting any metrics
from the commits. The engine was only looping through the commits. The analysis
showed a dependence on the number of commits. This correlation was most significant
in the analysis of the total lifespan of the repository. An average duration per commit
of [0.12, 0.13] ms was calculated for all four analyzed repositories. However, this ratio
was not as constant when calculating a three-month period of the repository. Moment.js
had an average of 14.64 ms per commit, while react-native had one of 3.85 ms, nextcloud
one of 4.87 ms, and rust one of 2.62 ms. Therefore, the analysis engine only develops its
performance after a certain number of commits, and that the limitation to a specific time
period also influences the performance.

48 CHAPTER 5. EVALUATION AND DISCUSSION

472
moment.js |- I :
2,728
react-native - l -
7,632
Nextcloud | + -
17,237
rust |- % |
| | | | |
0 0.5 1 1.5 2
duration [ms] 104
T T T T
453
moment.js - | :
2,613
react-native |- |~ -
6,702
Nextcloud | I R
15,240
rust | 1
| | | |
0 0.5 1 1.5
duration [ms] 101

Figure 5.5: Execution Time: Collecting No Git Metrics (Lifetime vs. 3 Months)

Only Git History (commits/merges)

In addition to the previous test execution with no metrics, this one distinguishes between
commits and merges. Figure 5.6 clearly shows that this distinction has no significant
performance impact on the analysis engine.

Only Changes (additions/deletions)

During the execution of the test, where the effect of the examination of changed lines is
evaluated, in addition to the normal looping through of the commits, the changed commits
are added up for each one. This query caused the most extraordinary performance impact
in the analysis (Figure 5.7). While the analysis of small repositories only takes a little
more than a minute over their entire lifetime, an analysis of a huge repository takes more
than 1.5 hours. An analysis of small and medium-sized repositories over a period of 3
months can significantly reduce this execution time so that only seconds are required. For

5.1. PERFORMANCE TESTING 49

497
moment.js - | :
2,942
react-native - »- 1
7,566
Nextcloud | .
17,089
rust |- }H |
| | | |
0 0.5 1 1.5
duration [ms] -10*
T T T T
448
moment.js - }[:
2,591
react-native |- m -
6,798
Nextcloud | }|} R
15,368
rust - W 1
| | | |
0 0.5 1 1.5
duration [ms] 101

Figure 5.6: Execution Time: Collecting History as Git Metrics (Lifetime vs. 3 Months)

large and very large repositories with much activity, an analysis over a shorter period of
time must also be expected to take several minutes.

5.1.3 Platform Information

Due to the rate limits of the platform information retrieval from GitHub, only a period of
3 months was considered in this analysis. A large repository like the one chosen by rust
now has over 36’000 issues and 41’000 pull requests. A fetch of all this data and allocate
it to Git users drives the number of requests to the limit. An analysis of such a repository
over the whole runtime can, therefore, not be done with the chosen data retrieval method
or if the contingent of available requests is just sufficient, at least only sporadically.

90

moment.js

react-native

Nextcloud

rust

moment.js

react-native

Nextcloud

rust

CHAPTER 5. EVALUATION AND DISCUSSION

J[97,966
}5.43 - 10°
2-10° k
6.11 - 10°
i o |
| | | |
0 2 4 6
duration [ms] 109
T T T T T
‘ 694
25.144
94,487|
4.01-10°
| | | | |
0 1 2 3 4
duration [ms] 109

Figure 5.7: Execution Time: Collecting Changed Lines as Git Metrics (Lifetime vs. 3

Months)

Collecting Information

The results of the analysis of the duration of the collection of platform information from
GitHub show a result correlated with the number of issues and pull requests. However,
there were differences in the breakdown of the average time to obtain a commit/pull
request. This duration ranges between 82 ms and 92 ms, whereas the rust repository
with the highest number of issues and pull requests has a higher duration of 116 ms. The
reason for this is the number of requests. Issues, issue comments as well as pull requests
and their activities can be requested from GitHub in a maximum bundle of 100. To get
more data, a pagination approach is used to get the missing data from the API. If more
requests are made, because the page length is often only just exceeded, the duration per

issue/pull request increases.

5.1. PERFORMANCE TESTING 51

23,897
moment.js - ‘ :
1.53 - 10°
react-native - 1
1.99 - 10°
Nextcloud | .
5.35 - 10°
rust |- n
| | | | | |

0 1 2 3 4)
duration [ms] -10°

Figure 5.8: Execution Time: Collecting Platform Information (3 Months)

Mapping to Git Users

For mapping the collected platform information to a Git user, requests to GitHub are
also necessary. To be precise, one request per Git user is needed. The tests confirmed the
assumption that the time needed for mapping increases with the number of contributors.
Nevertheless, it is interesting to note that the mapping duration is not constant when
calculated down to one Git user. With a duration of 278 ms to 577 ms per Git user, it is
so different that no reliable prediction can be made for a different number of users.

T T
6,585
moment.js - } :
39,035
react-native |- H{ -
22,770
Nextcloud | * R
2.18-10°
rust - 1
| | | | |
0 0.5 1 1.5 2
duration [ms] -10°

Figure 5.9: Execution Time: Mapping Platform Information to Git Users (3 Months)

52 CHAPTER 5. EVALUATION AND DISCUSSION

5.1.4 Weight Analysis
Without Platform Information

The weight analysis only involves applying the defined formula to the collected informa-
tion. This calculation took only between 0 ms and 3 ms and is therefore negligible.

With Platform Information

The weight analysis with platform information takes measurably longer than without
platform information. For large repositories, the runtime of this process increases up to
20 ms. However, it should be noted that this noticeable increase in runtime was only
measurable in an analysis over the entire lifetime of the repository. In an analysis over a
shorter time frame such as three months, no noticeable effects were found.

5.2 Use Case

To present a use case of the analysis engine and evaluate the results, it has to be displayed
on a repository with an adequate number of developers involved. A high number of
contributors would unnecessarily extend the length of the analysis engine’s response in
this example. Furthermore, assessing the correctness of the evaluated contribution by
the persons involved in the repository would be more difficult and confusing with more
contributors. To assess the results of the engine, the persons involved in the repository are
expected to be able to evaluate the work of all contributors. Since personal acquaintances
to the main contributors of the neow3j repository were available, this was chosen as an
application and evaluation example.

For the analysis of the repository, the following request was sent to the analysis engine.
With this request, the neow3j repository on the master-3.x branch (the current master
branch) should be analyzed from January 1st to July 1st. Furthermore, an overview of
the contribution should be given.

GET http://localhost:8080/weights?
repositoryUrl=https://github.com/neow3j/neow3j.git
&since=2020-01-01T00:00:00Z
&until=2020-07-01T00:00:00Z
&platformInformation=true

&branch=master-3.x

Figure 5.10: Request to Analyze neow3j Repository

0 3 O UL i W N~

0 3 O U i W N —

5.2. USE CASE

23

I

}s

I

7contributor”: {
"name”: ”Guilherme Sperb Machado”
7email”: 7guil@axlabs.com”

Iz
"weight”: 0.29578597951016683

"contributor”: {
"name” : ”Claude Muller”

7email”: "claude@axlabs.com”

’
"weight”: 0.5499743238994934

"contributor”: {
"name”: ”Guil. Sperb Machado”
7email”: 7guil@axlabs.com”

}s
"weight”: 0.016488273578008774

"contributor”: {
"name” : “mialbu”
7email”: "michael@axlabs.com”

}s
"weight”: 0.011311198591179652

7contributor”: {
"name”: ”Michael Bucher”,
7email”: "michael@axlabs.com”
I
"weight”: 0.12644022442115138

Listing 5.1: Response of Analyzation With Platform Information

}s

I

"contributor”: {
"name”: ”"Michael Bucher”,
7email”: "michael@axlabs.com”
I
"weight”: 0.19191669083734353

"contributor”: {
"name” : ”Claude Muller”
7email”: "claude@axlabs.com”

}s
"weight”: 0.6048589289082649

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

o4 CHAPTER 5. EVALUATION AND DISCUSSION

"contributor”: {
"name”: 7 Guilherme Sperb Machado”
7email”: 7guil@axlabs.com”
I
"weight”: 0.1610851634356544
I
{
contributor”: {
"name”: " Guil. Sperb Machado”,
“email”: 7guil@axlabs.com”
I
"weight”: 0.025056728126830102
’s
{
“contributor”: {
"name”: ”mialbu”,
7email”: "michael@axlabs.com”
Iz
"weight”: 0.017082488691907174
¥

Listing 5.2: Response of Analyzation Without Platform Information

These responses indicate which Git contributor was responsible for which partition of the
total contribution in the selected time period. As seen in the outcome in the response,
there are some very similar sounding users. This is because a developer can have several
Git accounts. If a developer makes changes directly on a platform like GitHub, this may
cause a different Git user to be created, even though it is the same developer. Therefore,
in the following charts, the Git users belonging to one developer are combined and their
shares are summed up.

|
60.49%
60% | 55%] |
=
S
é‘ 40% | 8
= 31.23%
=
S
o
13.78% H
’_‘ T I
Bucher Machado Muller

J0With Platform Information I Without Platform Information

Figure 5.11: Share of Contribution neow3;j

This summary of the contribution was conducted within multiple iterations where in
each iteration the results were discussed with the repository owner. Consequently, the

5.3. DISCUSSION 55

weights were adapted. The key insight from the feedback and adaptation was that the
platform information was not sufficiently weighted. In the end the analysis was regarded as
representative of the actual contribution. Figure 5.11 shows the contribution per developer
in the first semester of 2020, where once platform information was considered and the other
time not.

5.3 Discussion

The analysis engine developed in this study gives a new possibility to determine the con-
tribution in open source projects. With the chosen metrics, the available and reasonably
assessable ones were chosen to determine the contribution. There are undoubtedly other
metrics that could determine the contribution more accurately, but the limitations of open
source repositories and data availability limit their inclusion. In earlier literature, other
metrics can also be found that can be applied to open source repositories. However, in
the literature, these are only applied to a project in one language. Besides, often things
have to be configured for these analyses. Therefore the selection of metrics seems to be
reasonable.

Performance-wise, the metrics for LOC and platform information stand out. However,
these are precisely the central metrics for estimating the contribution. In earlier literature,
the LOCs are used most of the time. In the use-case analysis with the discussion with the
owners of the neow3j repository, the platform information should not be omitted either,
since there is also valuable information available for the work done.

With quality metrics that can be automatically assessed and applied to all repositories,
regardless of language and technology, and attributed to individual contributors, there
would be an even better overview of the contribution. Furthermore, with the defined
weights, which were refined in the use-case, they cannot be assumed to apply equally to
every project. Possibly the weights would have been defined slightly differently if the
use-case had been executed with other repositories. However, the defined weights are
certainly a good starting point. Finally, the analysis engine is still an engine that tries to
estimate the contribution with the available data.

96

CHAPTER 5. EVALUATION AND DISCUSSION

Chapter 6

Summary and Conclusions

In this thesis, a contributions analysis engine for open source software projects was pre-
sented. It was shown which existing approaches for contribution analysis exist and which
metrics were used.

Furthermore, different metrics for this engine were discussed in detail, and the final selec-
tion of the metrics used was explained. Three criteria mainly determined this selection
of metrics. The first significant limitation was the availability of information. All open-
source projects should be able to be analyzed, so the data source is limited to publicly
available information. The second major limitation was that it is possible to analyze any
open source project. Metrics that are only applicable to individual projects are, therefore,
not taken into account. The third was the automatic analysis. It should be possible to
analyze a project with simplicity and without the need for configuration. With these
limitations, the following metrics were selected. On top of metrics extracted from Git,
namely commits, merges, additions, and deletions, the metrics issues and pull requests
from platforms are optionally included in the evaluation.

Thereupon, a suitable formula was developed that uses the metrics selected from these
to make a statement about the developers’ contribution. This formula was validated
with open source contributors on a use-case. A performance evaluation identifies areas
of the engine that have a severe impact on the runtime. Based on this evaluation, an
optimization of the code was possible.

Future Work

The developed engine brings to the previous methods a possibility to analyze open source
repositories. The disadvantage of this engine is the calculation based on simple metrics.
For future work, it is planned be helpful to research the quality of a contribution. The
development of such a tool, independent of language and project, could make a statement
about the quality of a contribution without prior configuration. Moreover, a suitable
solution for requests must be found before integrating the analysis engine into an existing
system. A REST API interface offers some disadvantages for requests that take up to

57

58 CHAPTER 6. SUMMARY AND CONCLUSIONS

several minutes to respond. A scheduler could also help to analyze several open source
projects on schedule.

Bibliography

[1]
2]

[10]

[11]

Atlassian. Bitbucket, 2020. https://bitbucket.org Last visit October 16, 2020.

Victor R. Basili, Richard W. Selby, and T Phillips. Metric analysis and data valida-
tion across fortran projects. IEEE Transactions on Software Engineering, (6):652—
663, 1983.

X. Ben, S. Beijun, and Y. Weicheng. Mining Developer Contribution in Open Source
Software Using Visualization Techniques. In Third International Conference on Intel-
ligent System Design and Engineering Applications (ICISDEA 2013), pages 934-937,
2013.

C. Berge and E. Minieka. Graphs and Hypergraphs. Graphs and Hypergraphs. North-
Holland Publishing Company, 1973.

Jailton Coelho and Marco Tulio Valente. Why Modern Open Source Projects Fail.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2017, pages 186-196, New York, NY, USA, 2017. Association for
Computing Machinery.

Nadia Eghbal. Roads and Bridges: The Unseen Labor Be-
hind Our Digital Infrastructure. =~ Technical = Report. Ford Foun-
dation, 2016. https://www.fordfoundation.org/media/2976/

roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure.
pdf Last visit September 30th, 2020.

Facebook Inc. React GitHub Repository, 2020. https://github.com/facebook/
react Last visit September 30th, 2020.

International Organization for Standardization and International Electrotechnical
Commission. Software Engineering-Product Quality, volume 9126. ISO/IEC, 2001.

Git. Embedding Git in Your Applications - go-git. https://git-scm.com/book/en/
v2/Appendix-B:-Embedding-Git-in-your-Applications-go-git Last visit Set-
pember 22, 2020.

Git. Git - About Version Control, 2020. https://git-scm.com/book/en/v2/
Getting-Started-About-Version-Control Last visit October 5, 2020.

Git. Git - Branches in a Nutshell, 2020. https://git-scm.com/book/en/v2/
Git-Branching-Branches-in-a-Nutshell Last visit October 14, 2020.

39

60

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

BIBLIOGRAPHY

Gitea. Gitea - A Painless Self-Hosted Git Service, 2020. https://gitea.io/en-us/
Last visit October 11, 2020.

GitHub. Github help - creating an issue, 2020. https://docs.github.com/en/
enterprise/2.15/user/articles/creating-an-issue Last visit August 23, 2020.

GitHub. Github search - users, 2020. https://github.com/search?q=type:user&
type=Users Last visit August 8, 2020.

GitHub. GitHub Sponsors, 2020. https://github.com/sponsors Last visit October
20, 2020.

GitHub Inc. GitHub, 2020. https://github.com Last visit October 16, 2020.
GitLab. GitLab, 2020. https://gitlab.com Last visit October 16, 2020.

go git. go-git/go-git. https://github.com/go-git/go-git Last visit September
22, 2020.

golang. GOPATH - Golang/Go Wiki, 2020. https://github.com/golang/go/wiki/
GOPATH Last visit October 5, 2020.

gorilla. gorilla/mux. https://github.com/gorilla/mux Last visit September 22,
2020.

Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. Measuring Devel-
oper Contribution from Software Repository Data. In Proceedings of the 2008 In-
ternational Working Conference on Mining Software Repositories, MSR ’08, pages
129-132, New York, NY, USA, 2008. Association for Computing Machinery.

Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. Measuring Developer
Contribution from Software Repository Data. In Proceedings of the 2008 international
working conference on Mining software repositories, pages 129-132, 2008.

Maurice Howard Halstead et al. FElements of software science, volume 7. Elsevier
New York, 1977.

Péter Hegediis, T Bakota, Gergely Ladanyi, Csaba Faragd, and Rudolf Ferenc. A
Drill-Down Approach for Measuring Maintainability at Source Code Element Level.
01 2013.

ISO. Tec25010: 2011 Systems and Software Engineering—Systems and Software Qual-
ity Requirements and Evaluation (SQUARE)-System and Software Quality Models.
International Organization for Standardization, 34:2910, 2011.

JetBrains. GoLand: A Clever IDE to Go by JetBrains, 2020. https://www.
jetbrains.com/go/ Last visit October 11, 2020.

Khari Johnson. GitHub Passes 100 Million Repositories, 2018. https:
//venturebeat.com/2018/11/08/github-passes-100-million-repositories/
Last visit October 16, 2020.

BIBLIOGRAPHY 61

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[43]

Stephen H Kan. Metrics and Models in Software Quality Engineering. Addison-
Wesley Professional, 2003.

Zhifang Liao, Benhong Zhao, Shengzong Liu, Haozhi Jin, Dayu He, Liu Yang, Yan
Zhang, and Jinsong Wu. A Prediction Model of the Project Life-Span in Open Source
Software Ecosystem. Mob. Netw. Appl., 24(4):138241391, August 2019.

J. Lima, C. Treude, F. F. Filho, and U. Kulesza. Assessing developer contribution
with repository mining-based metrics. In 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 536-540, 2015.

Jon Loeliger and Matthew McCullough. Version Control with Git: Powerful tools
and techniques for collaborative software development. ” O’Reilly Media, Inc.”, 2012.

T. J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,
SE-2(4):308-320, 1976.

Moment.js. Moment.js GitHub Repository, 2020. https://github.com/moment/
moment Last visit September 30th, 2020.

Nextcloud GmbH. Nextcloud GitHub Repository, 2020. https://github.com/
nextcloud Last visit September 30th, 2020.

Open Collective. Open Collective - Make your community sustainable. Collect and
spend money transparently., 2020. https://opencollective.com Last visit October
20, 2020.

Enrique Ivan Oviedo. Control flow, data flow and program complexity. 1984.

ownCloud GmbH. ownCloud - share files and folders, easy and secure, 2020. https:
//owncloud.com/ Last visit October 27th, 2020.

R. M. Parizi, P. Spoletini, and A. Singh. Measuring Team Members’ Contributions
in Software Engineering Projects using Git-driven Technology. In IEEE Frontiers
in Education Conference (FIE 2018), pages 1-5, San Jose, CA, USA, USA, October
2018.

Patreon. Patreon, 2020. https://patreon.com Last visit October 20, 2020.

Postman. Postman | The Collaboration Platform for API Development, 2020. https:
//www.postman.com/ Last visit October 11, 2020.

Rust Team. Rust Programming Language GitHub Repository, 2020. https:
//github.com/rust-lang/rust Last visit September 30th, 2020.

Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L Bleris.
Code Quality Analysis in Open Source Software Development. Information systems
journal, 12(1):43-60, 2002.

Linus Torvalds. Tech Talk: Linus Torvalds on git. https://www.youtube.com/
watch?v=4XpnKHJAok8 Last visit October 16, 2020.

62 BIBLIOGRAPHY

[44] Elaine J Weyuker. Evaluating Software Complexity Measures. [EEE Transactions
on Software Engineering, 14(9):1357-1365, 1988.

List of Figures

2.1 Distributed Version Control Systems [10] 4
2.2 Git With Different Branches [11] 5
4.1 Commit Evaluation Engine Flow 15
4.2 Activity Flow Analysis Engine 0. 24
5.1 Execution Time: Cloning Repository 45
5.2 Execution Time: Checking for Updated Repository Version 46
5.3 Execution Time: Checking Out Correct Branch of Repository 46
5.4 Execution Time: Collecting All Git Metrics (Lifetime vs. 3 Months) 47
5.5 Execution Time: Collecting No Git Metrics (Lifetime vs. 3 Months) 48

5.6 Execution Time: Collecting History as Git Metrics (Lifetime vs. 3 Months) 49

5.7 Execution Time: Collecting Changed Lines as Git Metrics (Lifetime vs. 3
Months) 50

5.8 Execution Time: Collecting Platform Information (3 Months) 51
5.9 Execution Time: Mapping Platform Information to Git Users (3 Months) . 51
5.10 Request to Analyze neow3j Repository 52

5.11 Share of Contribution neow3j 54

63

64

LIST OF FIGURES

List of Tables

3.1

3.2

4.1

4.2

Comparison of Related Work 11
Weightage Scheme on Extracted Metric Data from [38] 12
Weights for Analysis Without Platform Information 22
Weights for Analysis With Platform Information 22

65

66

LIST OF TABLES

Appendix A

Installation Guidelines

A.1 Server Installation

If you are a windows user, you can simply execute the file engine.exe. This will allow the
server to run locally and handle requests to the endpoints.

Otherwise you need to synchronize the dependencies first. As this project is set up with
a go.mod file, this can be done by executing the following command inside the project
directory.

go install

Afterwards, you can build the engine by executing the following command inside the
project directory.

go build

This results in a binary, that can be executed to run the server.

A.2 Usage

The project is configured that way, that it runs the server at port 8080 of localhost. To
call an endpoint simply make a GET request to the server at localhost:8080 with one of
the following endpoints.

/contributions Request a listing of all contributors with their contributions
/weights Request a listing of the share of the total contribution by each contributor

parameters

e repositoryUrl

67

68 APPENDIX A. INSTALLATION GUIDELINES

— required
— link to .git file or the repository
— example: repositoryUrl=https://github.com/neow3j/neow3j.git

e since

— optional (default: date of first commit)
— date at which the analysis should start in RFC3339 format.
— example: since=2020-01-22T15:04:05%Z

until

— optional (default: now)
— date at which the analysis should end in RFC3339 format.
— example: until=2020-07-12T11:34:557Z

platformInformation

— optional (default: false)

— flag whether platform information such as issues and pull requests should be
analyzed.

— example: platformInformation=true

branch

— optional (default: master)
— name of the branch that should be analyzed.

— example: branch=develop

Example

GET http://localhost:8080/weights?
repositoryUrl=https://github.com/neow3j/neow3j.git
&since=2020-01-01T00:00:00Z
&until=2020-07-01T00:00:00Z
&platformInformation=true

&branch=master-3.x

Appendix B

Contents of the CD

e ZIP-file containing the project repository
e executable file of the engine for the windows platform

e PDF of the thesis

69

