
Design and Implementation of a
Blockchain-based Trusted VNF

Package Repository

Manuel Keller
Zürich, Switzerland

Student ID: 13-795-125

Supervisor: Eder John Scheid, Muriel Franco
Date of Submission: May 2, 2019

University of Zürich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Network operators are under much pressure to improve their services: On the one side,
they need to lower prices for customers, on the other side they have to invest in technologies
and at the same time provide their services with great stability. For this reason, operators
are turning to Network Function Virtualization (NFV).

In this thesis, �rst, the current works of using blockchain technology to enhance the
security of NFV environments are provided. So far, there have been e�orts to create
blockchain-secured NFV Management and Orchestration systems as well as to set up
trusted computing environments. These projects so far did not include the Virtualized
Network Functions repository (VNF repository). However, the blockchain’s properties
could enhance the security in this area by allowing to verify a package’s integrity without
relying on a trusted third-party for remote attestation or a secure database. Thus, a design
of a trusted VNF repository using blockchain technology is proposed. The smart-contract
back end o�ers a package repository as well as a repository manager and is supplemented
by a front end comprised of four distinct systems.

The proposed design is then implemented in the Ethereum network as a proof-of-concept.
The smart contract is written in Solidity. The front end is based on the tru�e and react
framework. The solution design relies on an external NFV environment to deploy, manage
and run the network functions.

The resulting implementation succeeds in enhancing the security of the VNF repository
without relying on external parties. The system is without access control and thus rep-
resents an open market for VNFs that all interested parties can access. The transaction
costs associated with the contract are reasonable and within useful boundaries. However,
the open design requires well-designed incentives. Otherwise, malicious participants could
abuse the system for �nancial bene�t.

This work shows that a blockchain-based trusted repository for VNF packages is feasible
and o�ers advantages over traditional techniques. Even though there are still challenges
connected to it, it resolves a weak point in existing NFV systems and shows promise to
be integrated in already blockchain-based NFV systems.

i

ii

Zusammenfassung

Netzbetreiber stehen unter gro�em Druck, ihre Dienste zu verbessern: Auf der Kundenseite
m�ussen sie die Preise tief halten, auf der anderen Seite sollten sie in neue Technologien
investieren und ihre Dienstleistungen mit hoher Stabilit�at erbringen. Aus diesem Grund
setzen Betreiber vermehrt auf Network Function Virtualization (NFV).

In dieser Arbeit werden zun�achst die aktuellen Forschungsergebnisse zur Verwendung der
Blockchain-Technologie zur Erh�ohung der Sicherheit von NFV-Umgebungen vorgestellt.
Es gab bereits Bestrebungen, Blockchain-gesch�utzte NFV-Management- und Orchestrie-
rungssysteme zu entwickeln und vertrauensw�urdige Computerumgebungen einzurichten.
Diese Projekte lassen allerdings das Thema des Repositorys der Virtualized Network Func-
tions (VNF) aus. Die Eigenschaften der Blockchain k�onnten jedoch auch die Sicherheit in
diesem Bereich erh�ohen, indem sie es erm�oglichen, die Integrit�at eines Pakets zu �uberpr�u-
fen, ohne sich auf einen vertrauensw�urdigen Drittanbieter f�ur remote attestation oder eine
zentrale Datenbank verlassen zu m�ussen. Deshalb wird ein Design eines Trusted VNF-
Repositorys auf Basis einer Blockchain vorgeschlagen. Das Repository-Backend basiert
dabei auf einem Smart Contract, auf den die vier Systeme des Frontends zugreifen.

Das vorgeschlagene Design wurde im Anschluss im Ethereum-Netzwerk als Proof-of-
Concept umgesetzt. Der Smart Contract wurde in Solidity geschrieben, das Frontend
basiert auf dem Tru�e Framework. Die Implementierung basiert auf einer externen NFV-
Umgebung zur Bereitstellung, Verwaltung und Ausf�uhrung der Netzwerkfunktionen.

Mit der resultierenden Implementierung gelingt es, die Sicherheit des VNF-Repositorys zu
erh�ohen, ohne auf externe Parteien angewiesen zu sein. Das System ist ohne Zugangskon-
trolle und stellt damit einen o�enen Markt f�ur VNFs dar, auf den jeder zugreifen kann.
Die mit dem Vertrag verbundenen Transaktionskosten sind angemessen und in sinnvollen
Grenzen. Das o�ene Design erfordert jedoch gut gestaltete Anreize. Andernfalls k�onnten
b�oswillige Teilnehmer das System zum �nanziellen Vorteil missbrauchen.

Diese Arbeit zeigt, dass ein blockchain-basiertes Trusted Repository f�ur VNF-Pakete
machbar ist und Vorteile gegen�uber herk�ommlichen Techniken bietet. Auch wenn es immer
noch Herausforderungen gibt, l�ost es einen Schwachpunkt in bestehenden NFV-Systemen
und zeigt ein Potenzial f�ur die Integration in bereits Blockchain-basierte NFV-Systeme.

iii

iv

Acknowledgments

I want to thank the Communication Systems Group team and Prof. Dr. Burkhard Stiller
for giving me the opportunity to write my master thesis about such a fascinating topic.
Special thanks go to Eder Scheid, who not only was my supervisor for this thesis but
also in the Communication Systems Seminar, which was the point in time when I got
interested in this topic. Also I thank my second supervisor Muriel Franco for his insights
into NFV systems through his background with the FENDE project.

Lastly, I thank Claudia Vogel for helping me write this thesis as well as Florian Fuchs for
proofreading.

v

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 2

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Theoretical Background 3

2.1 Network Function Virtualization . 3

2.2 VNF Packages . 4

2.3 Blockchain and Smart Contracts . 5

2.4 Solidity . 6

3 Related Work 9

3.1 Marketplaces for Virtualized Network Functions 9

3.2 Trusted NFV Environment . 11

3.3 Blockchain-based NFV Management and Orchestration 12

3.4 Discussion . 13

vii

viii CONTENTS

4 Blockchain-based Trusted VNF Repository 15

4.1 Solution Design . 15

4.1.1 Registration and Update System 18

4.1.2 Licensing System . 18

4.1.3 Veri�cation System . 19

4.1.4 Rating System . 19

4.1.5 Blockchain-based Repository Manager 19

4.1.6 Blockchain-based Package Repository 20

4.1.7 Data Storage . 21

4.1.8 NFV Back End . 21

4.2 Implementation . 22

4.2.1 Blockchain-based Repository Backend 22

4.2.2 Graphical User Interface . 27

5 Evaluation and Discussion 33

5.1 Management and Security . 33

5.2 Economical Aspect . 34

5.3 Cost Analysis . 35

5.4 Discussion . 35

6 Conclusion 37

6.1 Future Work . 38

Abbreviations 43

Glossary 45

List of Figures 45

List of Tables 47

List of Listings 49

CONTENTS ix

A Installation Guidelines 53

B Contents of the CD 57

x CONTENTS

Chapter 1

Introduction

The concept of Network Functions Virtualization (NFV), introduced in 2012 by the Euro-
pean Telecommunications Standards Institute (ETSI) [19], proposes to decouple network
functions such as �rewalls, Deep Packet Inspection (DPI), Intrusion Prevention Systems
(IPS), and load balancers from their specialized physical hardware. With NFV, these
functions are provided in a virtualized way and realized using generic Commercial O�-
The-Shelf (COTS) hardware that can be deployed in any location, not just the Service
Provider’s (SP) premises. This virtualization approach o�ers the SP several advantages,
such as increased scalability, exibility, security, cost reduction, and a faster product life-
cycle [16], because the Virtualized Network Functions (VNFs) are no longer physically
bound to a vendor-speci�c hardware. Thus, VNFs can be developed by third-party de-
velopers with a low entry-barrier, fostering competition and the creation of innovative
network services.

Blockchain is a recent technology, �rst described in 2009 in the Bitcoin white paper [17].
A blockchain is a data structure which allows for data to be stored in a distributed ledger.
Depending on the implementation and the con�guration of a blockchain-based distributed
ledger system, di�erent properties can be reached. Blockchains without access control
(i.e., public blockchains) operate on an incentive-basis. By design, any user can verify
the state of the system. The incentives are designed in such a way that the nodes (users)
verify the correctness of any new data that is added to the system. Such a blockchain’s
most important properties are immutability, and the decentralization of the data [31].
The former ensures that once the data is included in the blockchain it cannot be altered
or removed; while the latter provides a high availability of the data, i.e., the data will be
available if there is at least one peer holding a copy of the blockchain.

The properties of blockchain form the perfect environment for the execution of Smart
Contracts (SC). In the Bitcoin network [17], SCs facilitate the transfer of funds between
untrusted entities. In the Ethereum network [8], SCs are written in a Turing-complete
programming language, called Solidity [12]. This allows more functionality and helps
to enforce a variety of contracts through crytographic principles [4]. SCs deployed in
blockchains that provide Turing-complete languages can be used to facilitate trusted ex-
changes between untrusted entities and the trusted and correct execution of programmed

1

2 CHAPTER 1. INTRODUCTION

SC code. These properties can be used in the context of NFV solutions to address the
security issues regarding central databases for package integrity veri�cation.

1.1 Motivation

The deployment of NFV solutions faces a major challenge regarding incorporating trust
to stakeholders. Research has been conducted in how to address this issue in the NFV
computing environment with the introduction of Trusted Platform Modules (TPM) and
remote attestation services [23]. Although these systems work well to verify the state of
the NFV environment, they rely on a central database to verify package integrity. This
thesis proposes to improve VNF package veri�cation by introducing a blockchain-based
trusted repository. This can then be used to provide trusted information concerning the
VNF packages acquired by stakeholders. In this sense, stakeholders are not bound to rely
on central trusted authority, but rather on a distributed and highly available data source.

1.2 Description of Work

In this thesis, a survey on existing NFV marketplaces as well as repository solutions is
given. The focus lies on solutions which already implement one or more elements through
a blockchain-based distributed ledger. Then, a blockchain-based trusted repository is
designed and implemented as a Proof-of-Concept (PoC). The repository is intended to
later be integrated with traditional database-based package veri�cation environments;
thus acting as a trusted database containing VNF package information. Moreover, the
repository allows users to acquire VNFs without the need of a Trusted Third Party (TTP)
using an SC deployed on the Ethereum network. The SC automatically transfers any
license fees to the vendor once a VNF is acquired, and sends the VNF package link to
the buyer before verifying package integrity. Furthermore, to assess the feasibility of
implementation, a front end was implemented that allows interaction with the repository.

1.3 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 provides the theoretical
background of the thesis. It explains the underlying concepts of NFV, details VNF pack-
ages, and explains the blockchain technology and SCs. The subsequent chapter 3 provides
related works to the thesis by describing existing VNF marketplaces and existing uses of
the blockchain technology for management and orchestration in the NFV environment. In
Chapter 4, the solution’s architecture and design is explained. It is followed by implemen-
tation details including the user interface, and its functions. In Chapter 5, the design and
implementation are evaluated against the thesis’ goals and requirements. For this purpose
feasibility, management and security as well as economical aspects are considered. Lastly,
Chapter 6 concludes the thesis with a summary and future work.

Chapter 2

Theoretical Background

Technology is changing rapidly and continuously. Thus, it is crucial to establish a common
background and overview before delving into the technical details of this thesis. This
chapter aims to provide this overview and explains technologies and concepts later used
in the solution's design and implementation.

2.1 Network Function Virtualization

Network functions, such as �rewalls, load balancers, switches, and routers, generally re-
quire specialized physical hardware. Network Function Virtualization (NFV) is a proposal
to decouple the functions from their hardware such that they can be supplied via soft-
ware on generic server hardware. These Virtualized Network Functions (VNF) have great
potential to change operations of Service Providers (SP). The European Telecommuni-
cations Standards Institute (ETSI) has lead, since 2012, the development and standard-
ization of NFV. It has released the ETSI Management and Operation (ETSI MANO)
[19] architectural framework which is considered to be the de-facto industry standard for
the implementation of NFV solutions. The main components of the MANO framework
(Figure 2.1) are:

ˆ NFV Orchestrator: Acts as a coordinator that connects all VNFs into the required
structure to o�er network services. It manages the resource requirements of VNFs
and is responsible for authentication and authorization of network requests.

ˆ VNF : A functional block with de�ned interfaces and functional behaviour that per-
form a network service.

ˆ VNF Manager: Each VNF instance has an associated VNF manager which works in
coordination with the NFV Orchestrator and manages the VNF instances in terms
of instantiation, con�guration and termination.

ˆ NFV Infrastructure (NFVI) : The generic server infrastructure on which the VNFs
are deployed.

3

4 CHAPTER 2. THEORETICAL BACKGROUND

ˆ Virtualized Infrastructure Manager (VIM) : Manages the virtualized NFV infrastruc-
ture and allocates virtual to physical resources.

Figure 2.1: ETSI NFV MANO Architectural Framework [19]

The ETSI MANO architectural framework was created by an Industry Speci�cation Group
(ISG) NFV consisting of ETSI members. These industry partners have created this stan-
dard to improve compatibility between vendors which in turn means more freedom of
choice and exibility. This is a core requirement of the creators of the standard. As seen
in the architecture model, depicted in Figure 2.1, the standard does not include speci�ca-
tions about the design of VNF, but rather represents a speci�cation on how the services
are incorporated in an NFV environment [19].

2.2 VNF Packages

VNFs are typically shared and deployed in form of packages which can be used on virtual-
ization infrastructure. Such a package contains all relevant code and interface de�nitions
necessary for the operation of a network function and is deployed on the NFVI using one
or more Virtual Machines (VM). For con�guration, management and orchestration, it is
then integrated into an NFV environment (refer to Section 2.1) which links the services
to create the desired network function chains [19]. Each package needs to include detailed
speci�cations for operation and deployment in order to work in the context of the NFV

2.3. BLOCKCHAIN AND SMART CONTRACTS 5

environment. This challenge is tackled by ETSI's introduction of a package template
called Virtualized Network Function Descriptor (VNFD). This de�nes the deployment
and behaviour through three key components [21]:

ˆ Topology: All necessary nodes (i.e., VMs) are speci�ed including their connectivity
and relationships. Virtual Deployment Units (VDU) are used to describe capabilities
and requirements, such as disk size, memory size, and required CPUs.

ˆ Deployment aspects: This section describes aspects such as deployment parameters,
instantiation constraints, scaling, among others. Additionally, deployment avours
are used to describe di�ering requirements and constraints depending on the de-
ployment type. For example, this part would specify that a large scale deployment
may need an additional node for supervision.

ˆ VNF Lifecycle Management (LCM) operations: Provides a description of manage-
ment operations with their input parameters.

Based on the VNFD, the industry group OASIS created the Topology and Orchestration
Speci�cation for Cloud Applications (TOSCA) data model standard which implements
ETSI's speci�cations. This model is written in YAML [21]. Listing 2.1 presents an
excerpt from a TOSCA descriptor.

ETSI's VNFD and its implementations such as TOSCA mean that a VNF's speci�cations
are stored in a single �le. Thus, the NFV solutions can rely on those speci�cations to verify
compatibility, set up the required environment and also access lifecycle methods. This
leads to better cross-compatibility and reduces the complexity of the NFV environment.

1 t o p o l o g y t e m p l a t e :
2 node temp la tes :
3 VDU1 :
4 type : t o s c a . n o d e s . n f v . VDU . T a c k e r
5 p r o p e r t i e s :
6 image : c i r r o s � 0 .4 .0� x 8 6 6 4� d i s k
7 a v a i l a b i l i t y z o n e : nova
8 c a p a b i l i t i e s :
9 nfv compute :

10 p r o p e r t i e s :
11 d i s k s i z e : 10 GB
12 mem size: 2 0 4 8 MB
13 num cpus : 2

Listing 2.1: Excerpt of a TOSCA Descriptor for a Tracker running on CirrOS [22]

2.3 Blockchain and Smart Contracts

Blockchain is the underlying technology of Bitcoin �rst introduced in 2009 [17]. Since then,
it quickly became popular for its novel way of storing transaction data in a distributed

6 CHAPTER 2. THEORETICAL BACKGROUND

ledger. First mostly used for cryptocurrencies and other transaction-based applications,
it is now seen as a tool applicable to a variety of problem sets. The blockchain's ledger is
comprised of blocks of data. Each block is cryptographically sealed using hashing. As each
block contains the hash of the previous block, this chain of blocks guarantees practical
integrity: Data in sealed blocks cannot be changed, otherwise all following blocks would
become invalid. A block is chosen by a consensus mechanism which is based on economic
incentives. If there is an accidental split in the blockchain, it is the longest chain that is
chosen for the same economic incentives. In practice, this means that the more follow-up
blocks there are to a sealed block, the more secure data stored in it becomes.

SC rely on blockchains to \facilitate, execute and enforce the terms of an agreement
between untrusted parties" [1]. In contrast to traditional contracts, SCs do not rely
on trust or third-parties such as banks to enforce an agreement. In Bitcoin, the smart
contracts are restricted to �nancial transactions only and are not Turing-complete (e.g.,
loops are not possible). Other blockchains such as Ethereum [8], introduced in 2015, do
have Turing-complete smart contract capabilities. This enables more possibilities but also
introduces new security risks. [18, 4].

The Ethereum network is account-based. This means that unlike the Bitcoin network,
funds are always in one place, there is no need to keep track of all changes and transactions
in the network as the account state is updated whenever a transaction concerning the
account occurs. SCs in Ethereum also have such a state. Nodes in the Ethereum network
always store the most recent state of each contract, which enables the storage of data.
Due to the Turing-complete nature of the network, all computing operations have to be
paid to prevent Distributed Denial of Service (DDoS) attacks. These transaction fees are
called gas. Only if an SC function is called with su�cient gas it is executed and the new
state is stored in the network. The computations themselves are done in the Ethereum
Virtual Machine (EVM) in bytecode. There exist several programming languages that
can be compiled into this bytecode, the most popular being Solidity [4].

2.4 Solidity

Solidity is the leading programming language for SCs in the Ethereum network. It became
a popular language to develop distributed applications (DApps) over the past years with
now over 2000 DApps deployed in the Ethereum network [11]. It is designed with inu-
ences of C++, JavaScript and Python with the syntax resembling JavaScript and static
typing. It was designed intentionally in a simple way to allow easy development of secure
contracts. A Solidity �le can contain multiple contracts. The language also supports
inheritance and polymorphism which is for example used to create new ERC20 tokens1

that are compatible with all common wallet applications. Each contract can contain the
following elements [12]:

ˆ State Variables: Such variables are stored in the SC's storage and can be changed
by updating the state of the SC.

1The ERC20 token standard is a list of rules that simplify the creation of a new token, including
functions such astransfer

2.4. SOLIDITY 7

ˆ Functions: Functions are executable code that can be called. The visibility and
accessibility of the function can be de�ned,i.e., there exist external, public, internal,
and private functions.

ˆ Function Modi�ers: These can be used to change the behaviour of a function,e.g.,
checking a condition before execution or control access to a function.

ˆ Events: Events can be emitted by the contract and are stored in the transaction log.
Events can be captured in a front end via JavaScript callbacks and are a convenient
way of further processing data.

ˆ Struct types: Structs are a class-like type structure which are composed of variables
of other types. Struct variables can be used in the de�nition of further structs as
well.

ˆ Enum Types: An enum type has a de�ned set of possible values. A variable of this
type can take one of these values.

The Solidity language simpli�es the development of SCs considerably. However, it also
comes at a cost: As it is the most used programming language for SCs in the Ethereum
network, it is also the focus of hackers and malicious participants. Any newly found
vulnerability in the programming language thus impacts the security of all previously
deployed SCs.

8 CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Related Work

In this chapter, works that are related to the core topic of this thesis are described.
First, an overview of existing marketplaces for VNFs and their repository solutions are
presented. Then, previous e�orts that combine the blockchain technology and NFV are
described. Finally, a discussion regarding the advantages and shortcomings of such works
is conducted.

3.1 Marketplaces for Virtualized Network Functions

The standardization approach that industry groups are pushing in the NFV environment
context fostered the research and creation of marketplaces for VNF packages. As more
and more vendors are developing solutions adapted to this standard, the competition
around such topics also grows.

FENDE [5] is a Marketplace and a Federated Ecosystem for the Distribution and Execu-
tion of VNFs. It presents the user with all compatible network functions currently listed
in its repository. Unlike previous works, it also includes management and orchestration
tools which allow users to deploy and manage licensed services in the same ecosystem.
As such it is one of the �rst to combine marketplace and MANO environment in one
solution. As the system is con�gurable for the use with both public and private NFVI
hosting, institutions that desire to run network functions on-premise can use it as well.
FENDE's architecture (refer to Figure 3.1) is composed of three layers:

ˆ User layer: The part of the system that is responsible for user interactions with
three types of users: customers, reviewers, and developers.

ˆ Data layer: Acts as the backend for all user layer functions and o�ers a communi-
cation API. Also, it contains the catalogue of VNFs and the repository that stores
package information. The repository manager is responsible for any changes in the
repository and keeps local copies of the VNF packages.

9

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Theoretical Background
	Network Function Virtualization
	VNF Packages
	Blockchain and Smart Contracts
	Solidity

	Related Work
	Marketplaces for Virtualized Network Functions
	Trusted NFV Environment
	Blockchain-based NFV Management and Orchestration
	Discussion

	Blockchain-based Trusted VNF Repository
	Solution Design
	Registration and Update System
	Licensing System
	Verification System
	Rating System
	Blockchain-based Repository Manager
	Blockchain-based Package Repository
	Data Storage
	NFV Back End

	Implementation
	Blockchain-based Repository Backend
	Graphical User Interface

	Evaluation and Discussion
	Management and Security
	Economical Aspect
	Cost Analysis
	Discussion

	Conclusion
	Future Work

	Abbreviations
	Glossary
	List of Figures
	List of Tables
	List of Listings
	Installation Guidelines
	Contents of the CD

